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Abstract 
 
Atlas is an open source library currently developed at ECMWF providing grids, mesh generation, and parallel data 
structures targeting Numerical Weather Prediction or Climate Model developments. 
It is designed as an Object Oriented modular library, with the capability to take advantage of the most recent 
computer architectures. 
It is meant to provide, among many other features, a set of parallel interpolation methods for the conversion 
between different distributed representations of discrete physical fields. 
We evaluate the possibility of interfacing the Atlas interpolation functions from within the OASIS3-MCT coupler in 
order to improve the quality and the efficiency of the current SCRIP based interpolations. 
 

 
 
 

1.  

1. Rationale 
 
Currently, OASIS3-MCT includes a hybrid MPI+OpenMP parallel version of the SCRIP library (previously fully 
sequential) leading to great reduction in the off-line calculation time of the remapping weights. The results 
obtained with this SCRIP parallel version show a reduction in the remapping weight calculation time of 2 or 3 orders 
of magnitude as compared with the sequential version for high-resolution grids. However, the SCRIP library 
presents some specific issues near the poles. As noted in the SCRIP User Guide, the SCRIP search and intersection 
algorithms are based on linear parameterizations which are not valid near the pole; to avoid these problems, a 
Lambert equivalent azimuthal projection can be used poleward of a given threshold latitude but this option brings 
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in other issues. 
Furthermore, we have to anticipate potential bottlenecks when foreseeing the increasing resolution of new model 
configurations, the new architectures of the future generations of supercomputers and, finally, the need of on-line 
run-time updates of the interpolation weights for models using adaptive or moving meshes.	
A literature review of other libraries is currently carried on, in order to identify which ones could possibly replace 
the SCRIP in OASIS3-MCT or be available with the OASIS3-MCT sources in a specific environment so to allow an 
efficient and high-quality off-line generation of the remapping weights before the run. Candidates include ESMF, 
XIOS, MOAB/TemestRemap, ATLAS, YAC/CDO and CWIPI. A detailed analysis of the quality and performance of 
candidate libraries is systematically performed and they are compared to the SCRIP.	
This document refers to the ATLAS library, developed at ECMWF, in its official version 0.21.0 available at the time 
of writing (Aug. 2020).	
 

 

2. The Atlas library 
 
ECMWF is developing a library called Atlas, with the primary goals to exploit the emerging hardware 
architectures becoming available in the next few decades, and to support the development of 
alternative numerical algorithm strategies in operational Numerical Weather Prediction. 
Atlas is also expected to facilitate the coupling of an increasing number of Earth system components, 
such as the atmosphere, ocean, wave, surface, or sea-ice, and could effectively enhance existing 
couplers. 
Nevertheless, when compared to ESMF, it has to be noticed that ESMF and Atlas both provide similar 
fundamental building blocks for data structures and model development, however, Atlas has the 
distinct primary goal of accelerating novel numerical algorithm development for emerging hardware 
architectures, compared to ESMF’s effort to enhance collaborative Earth system model 
development. This has an impact on the way the API’s are designed: if ESMF is oriented to the 
description of externally defined grids, Atlas is oriented toward the use of an internally consistent 
set of predefined grids and meshes. 
We recall three of the stated goals of Atlas in the defining paper Deconinck et al., Atlas : A library for 
numerical weather prediction and climate modelling, Computer Physics Communications (2017), 
188-204, 220 that could be relevant for its use in OASIS: 
 

• Facilitate the implementation of different structured and unstructured point distributions on 
the sphere (global grids) and on limited areas of the sphere (non-global grids) 

• Support different programming languages, including Fortran and C++, providing object-
oriented (OO) designs and data structure flexibility, so that Atlas can be used to update 
existing and support new code infrastructures. 

• Provide object-oriented programming interfaces enhancing multi-disciplinary collaboration 
at multiple levels ranging from e.g. high-level mathematical operators, typically developed 
by domain scientists, to low-level data-storage abstractions, typically maintained by 
computer scientists. 

 
The development of the Atlas library is part of the wider ‘Scalability Programme’ ongoing at ECMWF 
and is still an active task with frequent updates.  Public versions of the Atlas library have been 
delivered as part of the ESCAPE initiative and are available on github. 
 
Atlas relies on the ECMWF set of cmake macros ecbuild for its compilation and on the cross-platform 
C++ toolkit eckit and on the fortran toolkit fckit for interoperating Fortran with C/C++ and interfacing 
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eckit. The three packages are freely available on github. 
 

3. The Atlas conceptual model 
 
The key concepts in the design of the Atlas data structure are: 
 

• Grid: ordered list of points (coordinates) without connectivity rules; 
• Mesh: collection of elements linking the grid points by specific connectivity rules; 
• Field: array of discrete values representing a given quantity; 
• FunctionSpace: discretisation space in which a field is defined. 

 
These concepts are depicted in Fig. 1. 
 
A grid is merely a predefined list of two-dimensional points, typically structured and using two indices i and j so 
that point coordinates and computational stencils (e.g. derivatives) are easily retrieved without connectivity rules. 
In many cases a grid is enough to define fields with appropriate indexing mechanisms. 
For element-based numerical methods (generally unstructured) however, the mesh concept is introduced that 
describes connectivity lists linking elements, edges and nodes. 
A mesh may be decomposed in partitions and distributed among MPI tasks. Every MPI task then allows 
computations on one such partition. Overlap regions (or halos) between partitions can be constructed to enable 
stencil operations in a parallel context. 
In addition to a grid and mesh, it is necessary to introduce the concept of field, intended as a container of discrete 
values of a given variable. 
A field can be discretised in various ways. The concept responsible for interpreting or providing the discretisation 
of a field in terms of spatial projection (e.g. grid-points, mesh-nodes, mesh-cell-centres) or spectral coefficients is 
the function space. The function space also implements parallel communication operations responsible for 
performing synchronisation of fields across overlap regions. 
 

 
 
A possible Atlas workflow consisting of the creation and discretisation of a field, is illustrated in Fig. 2 

Figure	1:	The	conceptual	design	of	Atlas	
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More in detail, the grids within Atlas are classified hierarchically from a completely unstructured to a fully 
structured interpretation. One of Atlas’ functions is to provide a catalogue of a variety of grids defined by the World 
Meteorological Organisation. A non-exhaustive classification of grids which drove the design of Atlas is given in Fig. 
3. With every step in the classification, more structure is present in the grid that can be exploited. Not all of them 
have been implemented so far, in particular the grids under the StructuredZonesGrid class. 
 

 
In this classification the Grid base class presents a generic unstructured view of all the points present in the grid, 
single indexed. Note that the grid has no knowledge of any domain decomposition or parallelisation strategy. 
 
More details on the Grid classes are provided in the cited reference paper or on the documentation site (under 
construction and loosely following the current implementation) https://sites.ecmwf.int/docs/atlas/design/grid/ 
 
For a wide variety of numerical algorithms, a Grid (i.e. a mere ordering of points and their location) is not sufficient 
and a Mesh might be required. This is usually obtained by connecting grid points using polygonal elements also 
referred to as cells. 
For regular grids and some other structured grids, the mesh element can be inferred, for the other grids, notably 
the unstructured grids, explicit connectivity rules are required. The Mesh class, combining information from the 
lower level Nodes, Cells, Edges classes, provides a mean to access connectivity and adjacency relations. The Mesh 
can be distributed in memory and includes ghost points for the handling of domain decomposition halos. 
A Mesh may simply be read from file by a MeshReader, or generated from a Grid by a MeshGenerator. The latter 
option is illustrated in Fig. 2, where the grid points will become the nodes of the mesh elements. 
 
The FunctionSpace class is introduced because a Field can be discretised on the computational domain in various 
ways: e.g. on a grid, on mesh-nodes, mesh-cell-centres or spectral coefficients. The representation of a given 

Figure	2:	Workflow	of	Atlas	starting	from	Grid	to	the	creation	of	a	Field,	discretised	on	a	Mesh	
and	managed	by	a	FunctionSpace	

Figure	3:	Classification	of	grid	classes.	
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variable is intimately related to the adopted spatial numerical discretisation strategy (e.g. finite volume, spectral 
element, etc.). 
In addition to interpreting how a Field is discretised, the FunctionSpace also manages how the Field is parallelised 
and laid out in memory. Concrete FunctionSpace classes may implement parallel operations such as gather and 
scatter, reduce-all, or point-to-point communications, thus enabling the practical use of fields within parallel 
numerical algorithms 
 
The currently implemented FunctionSpace classes include NodeColumns, EdgeColumns, StructuredColumns and 
Spectral. 
In particular, the NodeColumns class describes the discretisation of generic fields with values located at the nodes 
of a mesh (notice that a Mesh object is needed) and may have multiple layers defined in the vertical direction. 
The StructuredColumns class describes the subset of fields with values located at the points of a structured grid 
and does not need the definition of a Mesh object. 
 
Finally, the Field class contains the values of a full scalar, vector or tensor field. The Field values are stored 
contiguously in memory, and moreover they can be mapped to an arbitrary indexing mechanism to target a specific 
memory layout. The ability to adapt the memory layout to match, for instance, the most efficient data access 
patterns of a specific hardware is a key feature of Atlas, even if it is hard to see how to take advantage of this 
capability in the context of the coupling of legacy codes. 
A Field also contains Metadata which store simple information like a name, units, or other relevant information. 
A Field delegates the access and storage of the actual memory to an Array that accommodates memory storage 
on heterogeneous hardware (e.g. the Array is responsible to synchronise data across the device - as a GPU - and 
the host - as a CPU). 
Parallelisation related methods are delegated to the associated FunctionSpace: each concrete FunctionSpace may 
implement methods like haloExchange, gather, scatter, or choose to delegate, in turns, its implementation to one 
or more parallelisation primitives like HaloExchange and GatherScatter, which are then setup for the required 
memory layout. 
Logically related Fields can be grouped together into one or more FieldSets and accessed from the FieldSet by 
name or by index. 
 
Many NWP and climate models contain algorithms to perform a variety of mathematical operations on fields. 
These operations relate closely to certain spatial discretisations or FunctionSpaces. Atlas provides implementations 
for some of these operations given a field that is compatible with the related FunctionSpace. One relevant example 
is the fvm::Method class, which contains everything required to construct mathematical operators using an edge-
based finite volume scheme, from which the concrete fvm::Nabla class has been used for the implementation of 
the new non-hydrostatic finite volume dynamical core for IFS. 
 
For our analysis, we are interested in the interpolation and remapping  capabilities which have been introduced in 
Atlas because of the common need of dealing simultaneously with different representations of the same data (grid 
points vs. spectral coefficients, different grids, increasing or decreasing resolution, rotating grids, etc.). 
Due to its design, Atlas provides a management of fields abstracted from the lower-level details: data locality, 
global reduce operations (both order-independent and not) and other parallelism concerns. In this way, it provides 
a solid and flexible foundation to build interpolation methods compatible with a variety of field representations 
 
 
 

4. Currently implemented interpolations in Atlas 
 
As in version 0.21.0, Atlas is now capable of some interpolation methods and the choice is limited by the grid class 
(cf. Fig. 3 for the taxonomy of grids) and the functionspace associated to the source and target representations. 
 
Citing Deconink (personal communication, July 2020), what is currently supported is: 
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• Structured	source	grid	to	any	target	grid.	
◦ the	source	grid	can	be	partitioned	with	e.g.	the	equal_regions	partitioner.	
◦ the	 target	 grid	 must	 currently	 follow	 the	 distribution	 of	 the	 source	 grid	

(MatchingPartitioner)	
◦ structured	 interpolation	 methods	 in	 2D	 (horizontal)	 and	 3D	

(horizontal+vertical):	linear,	cubic,	quasicubic	
◦ unstructured	 interpolation	 methods,	 in	 2D	 only:	 finite-element	 (requires	

meshing),	k-nearest-neighbour	(based	on	kD-tree)	
	

• Unstructured	source	grid	to	any	target	grid.	
◦ source	 grid	 can	 be	 partitioned	 with	 e.g.	 the	 equal_regions	 partitioner,	 or	

custom,	…	
◦ target	 grid	 must	 currently	 follow	 the	 distribution	 of	 the	 source	 grid	

(MatchingPartitioner)	
◦ meshing	of	source	grid	required,	currently	not	parallelised.	
◦ interpolation	methods:	finite-element,	k-nearest-neighbour	

 
What is currently not supported, but under development: 

• missing	values	
• non-matching	domain	decomposition	
• native	 support	 for	 the	 NEMO	 ORCA	 grids	 so	 that	 it	 can	 be	meshed	 and	 domain-

decomposed	quickly,	and	its	structure	can	be	exploited	for	interpolation.	
• grid-box-average	interpolation	
• second-order	conservative	interpolation	as	in	Jones	1998	

Trying to relate this information with the current workflow in OASIS, we need to match the coordinates based 
description of the grids in OASIS with the grid catalogue from Atlas. 
In OASIS, all the grids are entered via the lon, lat coordinates of the cell centres and, optionally, if conservative 
interpolations are needed, the corners coordinates of each cell. The value of the field can be seen as located at the 
grid centre (and as such it is used for distance based interpolations as nearest neighbour[s] or bilinear and bicubic) 
or assigned as constant to the cell described by the corners (and as such it is used for intersection based 
interpolations as the first or second order conservative methods). For the bilinear and bicubic interpolations some 
neighbouring information is inferred from the indexing of cartesian or reduced grids, but an explicit mesh 
connectivity is never needed. 
When entering in Atlas a grid by its coordinates, with no other information, it is necessarily entered as an 
unstructured grid. Notice that for the description of Regular LonLat grids or Structured Reduced Gaussian grids 
Atlas does not require the point coordinates but only the parameters (number of subdivisions or Gaussian order) 
for the internal reconstruction of the grid point coordinates. 
In the case of unstructured grids, the interpolation methods are therefore restrained to nearest neighbour(s) or 
finite element approximations on a mesh which has been computed by Delaunay triangulation with no detection 
of logically rectangular elements. Notice, moreover, that the Delaunay triangulation is currently delegated to the 
CGAL package, it is not parallelised  and its complexity is close to linear in the number of points for points on a 
sphere surface, but could increase up to quadratic in the number of points for complex non-coplanar geometries: 
(cf. 
 https://doc.cgal.org/latest/Triangulation_3/index.html#Triangulation3seccomplexity). 
Finally, the current limitation on the Matching Partitions (grossly stated as “distributing the target grid with the 
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same geographic decomposition of the source grid, so that all the source information for a target cell is already 
local to its resources”) is in contrast with the usage in a coupler that has to accommodate pre-existing model 
decompositions and resources assignments. 
 

5. Test cases from the OASIS benchmark 
In the OASIS3-MCT distribution a predefined set of 2D surface grids is used for the non regression tests and the 
interpolation quality tests in general. 
Grids in the set are uniquely identified by a four letter key. For every grid the cell centres and cell corners 
coordinates are provided, together with a binary land/sea mask for surface points (and for advanced conservative 
interpolations a fractional mask for every pair of grids, accounting for non coincident coast representations) and 
an auxiliary cell areas field for the consistent surface weighting of the cells when computing discrete integral 
quantities. 
 
The grids are: 

• bggd: a regular LonLat grid with 144x143 subdivisions 
• ssea: a reduced Gaussian Grid with 128 latitudes and a varying number of longitudes per latitude, not 

corresponding to any of the predefined reduction strategies in Atlas 
• torc: a stretched logically cartesian grid corresponding to the ORCA2 mesh from the NEMO ocean model 
• nogt: a stretched tripolar logically cartesian grid corresponding to the ORCA1 mesh from the NEMO 

ocean model 
• icos: an icosahedral grid from the DYNAMICO core of the LMDz model with 15212 cells 
• icoh: a high resolution  icosahedral grid from the DYNAMICO core of the LMDz model with 2016012 cells 

 
Notice that the bggd grid can be described in Atlas also as a structured grid with key L144x143 and that the 
ssea grid can be described also as a structured atlas_ReducedGaussianGrid, even if there is no Atlas key for this 
reduction strategy, passing an integer array of size 128 (the number of latitude subdivisions) providing the number 
of longitude subdivisions per latitude. 
 
Since the ORCA and the icosahedral grids are not yet natively supported by Atlas, all the other grids can only be 
described as unstructured and a Delaunay triangulation is carried on to reconstruct a Mesh object. This practice 
overrides any intrinsic structure of the logically cartesian ORCA grids and of the analytically described icosahedra. 
Moreover, for the ORCA grids the overlapping points of the north fold have to be manually removed before 
entering the coordinates as grid points since Atlas does not handle repeated coordinates. 
 
Since OASIS3-MCT is coded in Fortran, we have implemented a flexible Fortran test program using the Atlas F2003 
APIs. We have noticed that only a subset of the C++ APIs have been ported to Fortran, even if the Atlas coding 
design allows for systematically exporting the C++ APIs to extern C functions that can, in turn, be accessed by 
Fortran iso c bindings. 
We have used an fckit_configuration object for parsing a json configuration file that we use to select a pair of grids 
from the OASIS test set (notice that bggd and ssea have been doubled to Atlas_bggd and Atlas_ssea for 
their corresponding structured descriptions) and perform a ping-pong interpolation of an analytical smooth 
function, optionally modified with a strong gradient structure mimicking the Gulf Stream. 
The different Atlas methods can be tested on a single processor or in parallel (Atlas imposes the domain 
decomposition with an Equal Area partitioner on the source grid and with the corresponding Matching Partitioner 
– when possible – for the target grid), accordingly to the supported (structured or unstructured) grid 
representations. 
 
The analytical and the interpolated fields as well as their relative percentage misfits are optionally stored in NetCDF 
files and – if a Mesh is generated in Atlas – in gmsh files for 3D visualization on the sphere. 
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An an example, Fig. 4 shows the relative percent error of a k-nearest-neighbours (k=4) interpolation from the icos 
to the torc grid. The Delaunay triangular mesh is overlapped in black. The stretched ORCA2 grid points moved 
from the continents to the Mediterranean, Red, Black and Caspian Seas seas, in order to locally increase the 
resolution, are clearly visible. 
 

 
 
 
 

Figure	4:	Relative	difference	for	the	k-nearest-neighbours	(k=4)	interpolation	from	an	
icosahedral	to	the	ORCA2	grid	(both	described	as	unstructured)	
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Conversely, Fig. 5 shows the difference of the single nearest-neighbour interpolation from the ORCA2 torc grid 
to the low resolution icos grid: the global field on icos is reconstructed from the shifted continent points, 
leading to higher errors on the continents and is extrapolated to the Antarctic region from the southernmost values 
on the ocean grid, not covering the South Pole. 
 

 
 
 

Figure	5:	Relative	difference	for	the	nearest-neighbour	interpolation	from	the	ORCA2	to	an	
icosahedral	grid	(both	described	as	unstructured)	
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Fig. 6 shows the error in case of icosahedral grid refinement from icos to icoh with a nearest neighbour 
interpolation 
 

 
 

Figure	6:	Relative	difference	for	the	nearest-neighbour	interpolation	from	the	low	resolution	to	
the	high	resolution	icosahedral	grid	(both	described	as	unstructured)	
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While Fig. 7 refers to the same interpolation but with the finite element method. Notice the concentration of errors 
near to the coordinates axes intersection, here at -180°,0° (the colorbar has been bounded to avoid hiding the 
remaining structures), a feature that is seen also with the structured bilinear and bicubic methods. 
 

 
As a remark, the finite-element interpolation fails when one of the grids is an ORCA grid, probably because of the 
missing points at the South Pole or of the stretched elements on the continent. 

Figure	7:	Relative	difference	for	the	finite	element	interpolation	from	the	low	resolution	to	the	
high	resolution	icosahedral	grid	(both	described	as	unstructured)	
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The following figures all refer to the interpolation from the reduced gaussian grid ssea to the regular LonLat 
144x143 grid bggd. The nearest neighbours (single or k=4) interpolations have been performed on the grids either 
represented as unstructured with a Delaunay mesh and a NodeColumns functionspace or as structured with a 
StructuredColumns functionspace. Results are almost identical. 
 

 
 

Figure	8:	Relative	difference	for	the	nearest-neighbour	interpolation	from	the	reduced	gaussian	
ssea	grid	to	the	regular	lonlat	144x143	grid	(both	described	as	unstructured).	
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Figure	9:	Relative	difference	for	the	k-nearest-neighbours	(k=4)	interpolation	from	the	reduced	
gaussian	ssea	grid	to	the	regular	lonlat	144x143	grid	(both	described	as	unstructured).	
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The bilinear (Fig. 10) and bicubic (Fig. 11) interpolations have been applied on the  structured representations with 
a StructuredColumns function space. Both show a concentration of errors near to the coordinates axes intersection, 
here at 0°,0°. The colorbar has been bounded to avoid hiding other structures. 
 

 
 

Figure	10:	Relative	difference	for	the	bilinear	interpolation	from	the	reduced	gaussian	ssea	grid	
to	the	regular	lonlat	144x143	grid	(entered	as	structured	grids).	
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Figure	11:	Relative	difference	for	the	bicubic	interpolation	from	the	reduced	gaussian	ssea	grid	
to	the	regular	lonlat	144x143	grid	(entered	as	structured	grids).	
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The finite-element interpolation applied to the StructuredColumns representation (Fig. 12) sports a different error 
pattern, yet the error is still concentrated near to the coordinates axes intersection, here at -180°,0° (the colorbar 
has been bounded) 
 

 
 

Figure	12:	Relative	difference	for	the	finite-element	interpolation	from	the	reduced	gaussian	ssea	
grid	to	the	regular	lonlat	144x143	grid	(entered	as	structured	grids)	
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Notice that, for these grids, the finite element interpolation on the unstructured representation (Fig 13.) fails with 
highly oscillating errors along longitudinal bands. 
 

 

6. Performances 
As a very basic scalability test, we have performed the construction of the matrices for the back and forth bilinear 
interpolations between regular grids of different resolutions on the 6 cores of an Intel Xeon E-2186M cpu (Dell 
Precision 7730 laptop). Timing are easily obtained by setting the environment variable ATLAS_TRACE=1 (times 
from the StructuredInterpolation2D::do_setup sections) 
 
 1/20° to 2° 2° to 1/20°  1/12° to 1° 1° to 1/12° 

Serial 0.00503547s 12.58810s  0.01947480s 4.430450s 

2 MPI procs 0.00239123s   6.56235s  0.00933619s 2.325970s 

4 MPI procs 0.00136010s   3.50134s  0.00506786s 1.237620s 

6 MPI procs 0.00106058s   2.61592s  0.00371443s 0.931651s 
 

7. Conclusions 
The Atlas design is certainly appealing and could provide a useful portable toolkit for the best usage of new 
heterogeneous architectures. 
Nevertheless, its usage as a software foundation for the interpolation OASIS in the short term cannot be 

Figure	13:	Relative	difference	for	the	finite-element	interpolation	from	the	reduced	gaussian	ssea	
grid	to	the	regular	lonlat	144x143	grid	(entered	as	unstructured	grids)	
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recommended. 
 
Some basic capabilities are still missing in current version 0.21, in particular the handling of missing/masked values 
and the whole chapter of conservative interpolations. Some constraints, as the matching parallel distributions of 
the source and target grids are too strict. All these aspects are the object of current developments, but no precise 
roadmap has been announced. 
 
The overall design of the APIs is probably too oriented toward the coherent implementation of a full set of 
treatments all based on Atlas and its grid and fields representations. A flexible tool as OASIS has to be, needs to be 
able to account for geometries and representations coming from existing model that cannot be modified. This has 
been a key concept in the design of the interfaces of OASIS or ESMF or  XIOS which input a model grid or mesh 
description with a minimal required information. 
This feature will be of particular concern when implementing conservative interpolations: surface interpolation for 
climate models must conserve the energy integrals as they are computed by the single models and this requires 
to enter the exact coordinates of the “cells” that every model associates to a grid point and the surfaces of these 
cells as they are computed in the model. 
For the moment it isn’t clear how these aspects will be dealt with in Atlas. 
 
Another relevant issue for the interpolations, especially for the conservative methods, is the treatment of 
singularities in polar regions or along  discontinuous edges (as in reduced grids). Wrong assumptions and 
approximations can lead to catastrophic errors and this is an active research domain leading to different choices 
in different couplers. 
Similarly, there are different strategies for evaluating local gradients in the second-order conservative 
interpolation. We don’t know, for the moment, what has been foreseen for Atlas. 
 
Because of the lack of treatment of masked points, the quality of currently implemented interpolations has not 
thoroughly been compared to other methods. Nevertheless we remark some spatial structures in the error 
patterns that would deserve a specific analysis. 
 
Finally, from a practical point of view, the current state of the Fortran APIs is neither complete (w.r.t. C++ APIs) nor 
particularly flexible. No roadmap has been announced for the extension of the Fortran APIs and we don’t know if 
they are going to be progressively abandoned when IFS will move most of its internal procedures toward C++, as 
for the new dynamical finite volume core. 
Also from a practical point of view, there is, up to date, a painful lack of documentation and the only way of finding 
any example is to scroll through the non regression test procedures and the sandbox codes. Once again, only a 
small subset of it is coded in Fortran. 
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Appendix A: Installation of Atlas 
All the tests have been carried on on a 6 cores Intel Xeon E-2186M cpu of a Dell Precision 7730 laptop under Fedora 
Core 26 64 bits. 
 
The software environment is loaded with the following modulefiles: 
  1) compiler/intel/18.0.5.274 
  2) mpi/intelmpi/2018.4.274 
  3) lib/phdf5/1.10.4_impi 
  4) lib/netcdf-fortran/4.4.4_phdf5_1.10.4 
 
and cmake has been upgraded to version 3.17.2 
 
The main documentation for atlas installation can be found on 
https://sites.ecmwf.int/docs/atlas/ 
 
The required dependencies are: 
CMake --- For use and installation see http://www.cmake.org/ 
ecbuild --- ECMWF library of CMake macros 
eckit (with MPI support) --- C++ support library 
 
And the recommended dependencies are: 
fckit --- For enabling Fortran interfaces 
python --- only when Fortran bindings are required) 
cgal --- if Delaunay triangulation of unstructured grids is needed 
 
Installation instructions for ecbuild are on 
https://sites.ecmwf.int/docs/atlas/getting_started/install_ecbuild/ 
only the CMAKE_INSTALL_PREFIX key is needed. 
The ecbuild_ROOT environment variable should point to that prefix and $ecbuild_ROOT/bin has to be 
added to the shell PATH. 
 
Installation instructions for eckit are on 
https://sites.ecmwf.int/docs/atlas/getting_started/install_eckit/ 
Notice that the CC, CXX, MKL_ROOT and MPI_ROOT have to be set before invoking cmake and that, if only atlas 
needs to be built on top of eckit, a lighter version can be compiled: 
cmake ../ -DCMAKE_MODULE_PATH=$ecbuild_ROOT/share/cmake/ecbuild \ 
          -DCMAKE_INSTALL_PREFIX=xxx \ 
      -DENABLE_MPI=ON           \ 
      -DENABLE_TESTS=OFF        \ 
          -DENABLE_ECKIT_SQL=OFF    \ 
          -DENABLE_ECKIT_CMD=OFF    \ 
          -DENABLE_ARMADILLO=OFF    \ 
          -DENABLE_VIENNACL=OFF     \ 
          -DENABLE_CUDA=OFF         \ 
          -DENABLE_AEC=OFF          \ 
          -DENABLE_XXHASH=OFF       \ 
          -DENABLE_LZ4=OFF          \ 
          -DENABLE_JEMALLOC=OFF     \ 
          -DENABLE_BZIPS2=OFF       \ 
          -DCMAKE_DISABLE_FIND_PACKAGE_Doxygen=ON 
The eckit_ROOT environment variable should point to the installation prefix and $eckit_ROOT/bin has to 
be added to the shell PATH. 
 
Installation instructions for eckit are on 
https://sites.ecmwf.int/docs/atlas/getting_started/install_fckit/ 
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Notice that the CC, CXX and Fortran have to be set before invoking cmake and that, if only atlas needs to be 
built on top of fckit, a lighter version can be compiled . 
cmake ../ -DCMAKE_INSTALL_PREFIX=xxx \ 
          -DENABLE_TESTS=OFF 
The fckit_ROOT environment variable should point to the installation prefix and $fckit_ROOT/bin has to 
be added to the shell PATH. 
 
Tesselation is needed for Delaunay triangulation of unstructured generic meshes, therefore cgal is a prerequisite 
Version 4.10.1 can be installed via dnf under FC26. Notice, however, that current version is 5.0.3 
[root ~]# dnf install CGAL 
[root ~]# dnf install CGAL-devel 
 
Installation instructions for Atlas itself are on 
https://sites.ecmwf.int/docs/atlas/getting_started/installation/ 
Notice that the CC, CXX and Fortran have to be set before invoking cmake 
cmake ../ -DCMAKE_INSTALL_PREFIX=xxx \ 
          -DENABLE_TESSELATION=ON \ 
          -DENABLE_DOCS=ON \ 
      -DENABLE_SANDBOX=ON 
The -DENABLE_DOCS=ON option is not needed for production installation and the -DENABLE_SANDBOX has 
been useful only for the current analysis 
The atlas_ROOT environment variable should point to the installation prefix and $atlas_ROOT/bin has to 
be added to the shell PATH. 
 
If the installation has succeeded,  the atlas --info command should provide a full report on the installation. 
 
Even if cmake is the preferred compilation environment, in particular if wrapped by ecbuild macros, 
applications using Atlas can be compiled with simple Makefiles accessing the module directories under the Atlas 
and fckit installation roots and the atlas, eckit and fckit libraries in the corresponding lib installation directories. 
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Appendix B: Needed tweaks 
In order to write the NetCDF output of fields represented on  a  StructuredColumns functionspace in a consistent 
way with fields represented on a NodeColumns functionspace, we rely on the xy coordinated of the points or of 
the nodes, gathered on the master process, the one writing the NetCDF output. 
As in version 0.21, the gather of the xy coordinates fails for the  StructuredColumns functionspace because the 
shape of the xy field has not been declared. 
We had to add the 
field_xy_.set_variables( 2 ); 
instruction at line 547 of 
src/atlas/functionspace/detail/StructuredColumns_setup.cc 
 
As in version 0.21, interpolation can be set up and performed in parallel only if the domain decomposition of the 
target grid matches the domain decomposition of the source grid. 
The C++ APIs expose a matching partitioner object both for Meshes and for FunctionSpaces. The latter is strictly 
necessary when working with StructuredColumns functionspaces, since the connectivity is inferred and no Mesh 
object is generated. 
The Fortran API, in version 0.21, only exposes the atlas_MatchingMeshPartitioner object. 
We had to create a public atlas_MatchingFunctionSpacePartitioner object in 
src/atlas_f/grid/atlas_Partitioner_module.F90, declare its constructor interfacing the C 
wrapper of 
atlas__grid__MatchingFunctionSpacePartitioner__new and propagate its public declaration to 
the atlas_module in src/atlas_f/atlas_module.F90 
 
Because of the still limited handling of polymorphism in F2003, some redundant coding is needed even when the 
syntax is common to all concrete implementations. 
As an example, the base atlas_Functionspace type from 
src/atlas_f/functionspace/atlas_FunctionSpace_module.F90 
does not contain any field, but only some private or generic procedures. 
The gather procedure is defined in all the extending functionspace types, but the PointCloud and, therefore, it 
is not defined in the base type. 
In Fortran, a variable declared as 
CLASS(atlas_FunctionSpace), ALLOCATABLE :: functionspace 
can be later “cast” into a concrete type with a mold allocation, as in 
  SELECT CASE(TRIM(fs_in%name())) 
  CASE('NodeColumns') 
    ALLOCATE(atlas_functionspace_NodeColumns::functionspace) 
    functionspace = field_res%functionspace() 
  CASE('StructuredColumns') 
    ALLOCATE(atlas_functionspace_StructuredColumns::functionspace) 
    functionspace = field_res%functionspace() 
  END SELECT 
yet, the Fortran compiler does not accept any reference to typebound procedures that are not 
declared in the class, unless they are referenced in a SELECT TYPE construct. 
Since the TYPE IS switch does not allow for more than one type, we had to introduce redundant 
constructs as in: 
  SELECT TYPE(functionspace) 
  TYPE IS(atlas_functionspace_StructuredColumns) 
     CALL functionspace%gather(lonlat,lonlat_g) 
     CALL functionspace%gather(field_res,field_res_g) 
     CALL functionspace%gather(field_true,field_true_g) 
     CALL functionspace%gather(field_diff,field_diff_g) 
  TYPE IS(atlas_functionspace_NodeColumns) 
     CALL functionspace%gather(lonlat,lonlat_g) 
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     CALL functionspace%gather(field_res,field_res_g) 
     CALL functionspace%gather(field_true,field_true_g) 
     CALL functionspace%gather(field_diff,field_diff_g) 
  END SELECT 
A thorough design of Fortran APIs should either use abstract classes with deferred procedures 
(making, nevertheless a bit more cumbersome the use of broader classes as routine arguments) or 
enrich as much as possible the base class with stub typebound procedures interfaces that the 
concrete extensions will override, provided that the generic interfaces can still be resolved by the 
compiler. 


