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The SCRIP interpolation library  defines the multiplication matrix used by OASIS to interpolate
coupling fields between different model grids. This document summarizes the recent developments
introduced  in  both  OASIS  PSMILE  &  SCRIP  libraries  to  enhance  computing  performances  in
sequential  and  parallel  mode  (hybrid  OpenMP/MPI).  It  must  be  emphasized  that  the
implementation tried to preserve the results, then renounce to rationalize several algorithms (in
particular, neighbors search restrictions that were found wrong in several cases) that necessarily
need to be investigated in a second step. Performances (speedup of the calculations by 2 to 3
orders  of  magnitude)  are  presented  for  nearest  neighbors,  bicubic,  bilinear  and  conservative
interpolations.

Rationale

Since its  first  implementation in OASIS [1],  the SCRIP [2] calculation of weights  and addresses
(W&A, interpolation multiplication matrix) is performed only by the MPI master process of the
coupled models.  In addition,  for each interpolation,  the operation is  done by only  one of the
models  involved in the OASIS coupling,  a  sender  of one of the  coupling fields  related to the
interpolation.

OASIS based coupled systems are usually exploited on supercomputers and their components are
often parallelized with MPI or even MPI+OpenMP libraries. We took benefit  of the existing MPI
internal parallelization of the OASIS/MCT communication routines, and extended it to the SCRIP
library. In a standard use, parallel models which include the OASIS/SCRIP library can now perform
W&A calculation in parallel without any extra operation of the user. Notice that the SCRIP library
implement a hybrid MPI+OpenMP parallelisation. It relies on the MPI parallel layout of the calling
model but only enrols one MPI process per node1. The number of OpenMP threads per node is set
by  the  dedicated  environment  variable  OASIS_OMP_NUM_THREADS2.  For  optimum
performances, it is recommended to set this variable to the number of cores of the node. Notice
that, for most of the OpenMP implementations, the number of threads activated at run time is
limited  by  the  overall  value  set  with  the  OMP_NUM_THREADS environment  variable.  If
OASIS_OMP_NUM_THREADS is not set, it defaults to  OMP_NUM_THREADS. On the contrary, if
some of the coupled MPI+OpenMP hybrid models have to be run on less than the total number of
cores  per  node  (e.g.  the  number  of  core  per  sockets),  then  they  should  rely  on  dedicated
environment variables and not on OMP_NUM_THREADS, which has to be large enough to grant
resources to the finest  grain parallelisation (notice that this consideration is not specific to the
SCRIP library,  but  applies  already  to the case of two coupled models  with  different  OpenMP
layouts). If the OMP_NUM_THREADS environment variable is not set or it is set to 0, then all the
logical cores are activated. If hyperthreading is activated this can lead to a serious deterioration of
performances. In such a case it is mandatory to set the OASIS_OMP_NUM_THREADS environment

1 On some machine, the I_MPI_WAIT_MODE environment variable must be set to “enable” to save CPU time on
the other MPI processes of the node

2 Of course, the OASIS libraries must also be compiled and linked with the appropriate OpenMP option



variable  to  the  number  of  physical  cores  of  the  node.  Users  may  want  to  distribute  SCRIP
calculations on more than OMP_NUM_THREADS threads. In this case, one would define this number
in  the  environment  variable  OASIS_OMP_NUM_THREADS.  For  optimum  performances,  it  is
recommended to set this variable to the number of cores of the node.

The SCRIP interpolations can be filed in two groups: A) conservative (1st and 2nd order) and B) all
others:  bilinear,  bicubic,  distance  weighted  and  Gaussian  weighted  nearest  neighbor.  B-type
interpolations mainly follow the same procedure: for each unmasked target grid point, a distance is
calculated with all (or a subset of) source grid points to determine which one are the closest and
could participate to the weight calculation. It means that  N independent calculations (with  N =
target  grid point  number)  can be scattered to different  nodes  of the machine without  major
communication bottleneck. On this outer loop, a MPI parallelisation is done on every first core of
the nodes. In addition, to avoid memory bound duplication of source grid point arrays, OpenMP
threads  also parallelise the outer loop on target grid points  and share the source grid point
related variables [3,4]. After W&A calculation, results are copied on shared variables (OpenMP)
and gathered on the master process of the model (MPI_IRECV).

W&A procedure is  slightly different with A-type interpolations. Mesh contour intersections are
calculated on both source and target grids. Consequently, the OpenMP/MPI hybrid parallelization is
done on two outer loops (over source and target grid points). The search of neighbors potentially
intersected  can  be  restricted  using  the  so-called  “bin”  technique.  In  a  second  step,  the
complementary nearest neighbor search (launched for target grid points without intersection with
unmasked  source  grid  points)  is  also  parallelised  with  OpenMP.  Preliminary  rewriting  were
necessary to start the parallelisation of this interpolation. Details are given in Appendix 1.

Performances

A dedicated simplified coupled model (MPI+OpenMP //) was developed to be able to launch the
W&A calculations on different grids (see table 1)

Source grid type/Resolution LowRes (200Km) HighRes (50Km) UltraHighRes (10Km)

LR grid (logically rectangular) ORCA1 (362x294) ORCA025 (1442x1050) ORCA12 (4322x3147)

D grid (Gaussian reduced) T127 (24572) T359 (181724) T799 (843490)
Table 1: Grid resolution of the 3 sets (LR,HR and UHR) of W&A calculations

4 interpolations are tested in both directions (LR to D and D to LR grids): distance weighted of the
4 nearest neighbors, bilinear, bicubic and conservative first order (completed by nearest neighbor
if  no unmasked intersection is  found).  Results  are validated to ensure results  reproducibility  at
machine precision (due to different operation order).  Restriction of neighboring search (bin) is
used  with  conservative  interpolation  only  (the  accuracy  of  the  interpolation  wouldn't  be
guaranteed otherwise, see appendix 2). In this case, a number of 500 bins is prescribed.

On Figure 1, scalability of the W&A calculation is plotted (LR to D-type grid only) for 1,2,4,8,20 and
40  OpenMP  threads  and  1,2,4,8,16,32,64,128  (possibly  256)  MPI  tasks,  i.e.  a  total  of



1,2,4,8,20,40,80,160,320,640,1280,2560  and  5120  parallel  tasks.  40  threads  corresponds  to  the
number of physical cores per node on the targeted machine (BULL Météo-France “beaufix”).
LowRes scalability is not shown, considering that the time restitution (< 1sec) is highly dependent
on  external  disturbances  (network,  OS …)  and  always  smaller  than  other  contributions  of
interpolation initialisation (e.g. input file reading or W&A file writing).

Figure  1:  Scalability  of  W&A  calculations  for  4  SCRIP  interpolations  for  HighRes  (left)  and
UltraHighRes (right) configurations (logarithmic axes)

For B-type interpolations, the large number of possible neighbors treated (due to the lack of pre-
selection by bin) slows down the calculation at low resources. This same constraint favors  the
good scaling until 1280 (2560) tasks at HR (UHR). A higher scalability would be achieved with a
better load balancing, which is made diff icult by the heterogeneity of the operations per target
grid point (additional neighboring search if all source nearest neighbors masked, iterative loops ...)

The conservative (conserv) interpolation includes several operations: some loops are now parallel
with OpenMP and MPI (“sweeps”). The additional neighboring search (“fracnnei”) is OpenMP
parallel only. Some sections are still sequential. These are the reasons why a diagnostic of the
possible bottlenecks is more diff icult. Some assumptions:

• at low resources, better performances are observed in comparison to B-type group, due to
the bin functionality, and a new reduction of possible neighbors (improved bins)

• speed-up is slightly smaller: due to the reduced and variable number of possible neighbors
to check (function of the position of the pole if non iso-area source grid), a large load
imbalance affects performances since the beginning of the curve

• scalability limit is the same and again explained by the calculations heterogeneity per target
grid point (additional neighboring search, pole projections at high latitudes, ...)

 
On figure 2, we compare the restitution time of the four W&A calculations before (version v3 of
the code, in green) and after our optimization work (in red) with a parallel task number that



maximizes the calculation speed. At any resolution, it  leads to a reduction by 2 or 3 order of
magnitude. This result makes possible the W&A computation at coupling time step frequency and
open the door to further developments towards dynamical coupling, at least  for global model
resolution smaller than 50Km. 

Figure 2: Restitution time of SCRIP W&A calculations on one core with the original OASIS3-MCT
v3 library (green) and in parallel (red) on 2560 tasks (bilinear and conserv), 5120 tasks (bicubic and
distweight) at HR (left) and 5120 tasks (all interpolations) at UHR (right). Configurations using
10240 tasks or more were not tested. (logarithmic elapsed time axis)

The best  obtained performances of the parallel SCRIP library  are far from the ideal scalability.
Further improvements of the scalability require a thorough rewriting of the grid search algorithms
which was beyond the scope of the present work and that would demand an extensive validation
of  the  results.  Nevertheless,  it  is  important  to  remember  that  if  the  W&A calculations  are
performed from inside a coupled model running on N processing units, the current implementation
allows, with no change of the results, to take advantage of all the allocated resources, while the
sequential library, as implemented in OASIS-MCT3 v3 was wasting N-1 PU’s.

Possible improvements

During this work, some problems were reported (see Appendix 3). In particular, we do not forget
that  D-type  grids  lead  to  erroneous  results  when  a  Lambert  polar  projection  is  used  in
conservative method calculations. This will have to be corrected, by, for instance, adding corners to
mesh  segment  intersections  at  the  high  latitudes  of  the  Gaussian  grid,  if  the  Lambert  polar
projection proves to be beneficial, which still needs to be shown.

Generally speaking, two kinds of limitations were found during this parallel implementation: 



1-  the  heterogeneity  of  number  of  possible  neighbors  (neighboring  search),  sensible  at  the
beginning of scaling curve for conservative interpolation
2-  the  heterogeneity  of  calculations  themselves  (additional  neighboring  search,  iterative  loop,
polar projection ...) visible at the end of the curves

The reduction of neighboring search of distweight, bicubic and bilinear interpolation by bin seems
inherited from the conservative method but could lead to erroneous results (see Appendix 2 for
details). A re-thinking of the relevance and precision of this pre-selection for the other methods is
mandatory before any new try of algorithm enhancement. This bin method should be compared
with more popular algorithms like the k-nearest neighbors methods3. In any case, after this pre-
selection of possible neighbors, the load of computations per target grid point would have to be
evaluated in order to optimally scatter them on the MPI-OpenMP tasks.

Other improvements can be conjectured:
• An acceleration of the distance evaluation (replacing expensive trigonometric functions by

simpler multiplications4). 
• A simpler additional level of parallelism could be added by letting all models performing

their calculations at the same time (preprocessing of the namcouple information)
• The inclusion in OASIS of the new MONTE-CARLO method, recently added in the SCRIP

library, that could take benefit of the new GPU capabilities to become the fastest solution
at high resolution
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Appendix 1
Recent changes in remap_conserv.F90, fracnnei.F90 

and grids.f90 in view of their parallelisation
(A-type interpolations)

Preliminary analysis

The conservative remapping computation is the result of 7 algorithm steps
• The  detection  and  correct  masking  of  the  repeated  points  on  each  grid.  This  treatment  is

optional and activated by the preprocessing TREAT_OVERLAY key (this was added in the
OASIS version of the SCRIP).

• The first  sweep on the destination grid cells  detecting for each of them all  the intersecting
source  grid  cells,  computing  the  integral  contributions  and  the  contribution  to  the  surface
fractions

• The second  sweep on the source grid cells  detecting for  each of them all  the intersecting
destination grid cells, completing the integral contributions and the contribution to the surface
fractions

• A specific treatment for the computation of the areas and centroids of polar cells
• The centroids computation
• Some sanity checks

If the fracnnei option  (added in the OASIS version of the SCRIP)  is activated
• The detection of valid destination points entirely surrounded by masked cells for which the

nearest neighbour source cell is sought and its value used at the destination point.

With the initial configuration, on an Intel(R) Core(TM) i7-4930MX with 3.0GHz clock, the generation
of the remapping from the orca 1/4 deg grid (orca025) to the T359 reduced gaussian grid takes more
than 2700 seconds,  731 of which are in the detection of the overlapping points,  36 in the nearest
neighbour final correction, a few fractions of second in the poles treatment, the centroids computations
and the check, and almost 2000 seconds in the sweeps, with the second sweep being slightly faster than
the first one.
The remapping in the other direction from T359 to orca025 takes 3800 seconds,  516 spent in the
detection of the overlapping points, 293 in the nearest neighbour correction and almost 3000 in the
sweeps, with the second sweeps taking almost twice as the first one.

The difference in the timing of the two remappings, especially in the ratio between the time spent in the
first and second sweep can be explained by the fact that the detection of the cell side intersections and
the computation of line integrals is restrained to destination and source cells with partly overlapping
bounding boxes. The definition of the bounding boxes is quite rough and makes the restriction quite
inefficient in the sweeps spanning the orca025 grid.  

General considerations on the memory usage in OpenMP

In many passages, the original implementation of remap_conserv uses some local work array to store
preselected values to be used for successive computations. This technique was most probably adopted
for vector computers: storing operands in contiguous arrays was fundamental to obtain an effective



vectorisation. Memory was not at stake at the times.
When OpenMP is used for the parallelisation of the grid sweep loops, all work memory whose content
depends on the index of the loop has to be replicated on each thread (private arrays).
The memory occupation on a node will result from the product of the number of OpenMP threads and
the size of private work arrays. Foreseeing an important increase in grids resolution and in the number
of cores per node of future processors, the product could easily saturate the processor memory. It is
therefore of the highest importance to reduce at a minimum the private work arrays inside the sweep
loops.

Treatment of the repeated points on a grid (TREAT_OVERLAY)

If  oasis  has  been  compiled  with  the  preprocess  key  -DTREAT_OVERLAY,  before  entering  the
conservative remapping both grids are processed in order to detect overlapping points due to periodical
or polar closures;  this was added in the OASIS version of the SCRIP. On the destination grid we
enforce that only the point with lowest index is active and the replicas are masked out. For the source
grid we need to build a mapping associating the index of the replicated points to the point with lowest
index.

The original version used to scan the whole grid for every point to be checked. The coincidence check
has a tolerance of the order of the precision (fortran primitive epsilon(1.). The complexity is obviously
O(n²).
The new version sorts the grid coordinates calling a modified version of the standard heapsort (lines
242 and 281 of remap_conserv.f90). The code has been adapted from the Quantum Espresso fortran 90
implementation in order to compute only an index permutation vector, to use the “latitude first, then
longitude” sorting criterion and to evaluate equality with a tolerance of epsilon(1.). It has a complexity
of O(n log(n)).

Once the coordinates are sorted, equality has only to be checked amongst consecutive entries.

This approach cuts the time for the overlap check in the orca025 to t359 remapping down from 731
seconds to 0.4.

Since the parallelisation would require extra storage to avoid conflicts while modifying the grid mask,
we decided to keep this treatment sequential.

Indirect addressing based searches

The original implementation of the routine finding the intersections between the sides of a grid cell and
the sides of the preselected cells (by bins and bounding boxes intersection criteria) from the other grid
worked on contiguous arrays containing the addresses and the corner coordinates of the cells.
For each cell of one grid, in a first loop on the other grid (restricted by bins), the selected (by bounding
box intersection) cells  are counted (num_srch_cells)  then the address and corner  coordinates work
storages are allocated and, in a second loop, the addresses and the corner coordinates are copied into
the work storage (gather1: and gather2: loops).
Since num_srch_cells can be high if the resolutions of the two grids are at least locally very different,
the size of the working storage is not negligible. For the OpenMP parallelisation of the sweep loops, the
storage should be duplicated (private) on each thread and this could easily lead to memory saturation.

In the new implementation, only the cell addresses are stored and the coordinates of the corners are



directly taken from the original grid storage that will be shared (only one instance in memory) by all
the OpenMP threads.
In  the  intersection  subroutine,  instead  of  working  on  the  srch_corner_lon  and  srch_corner_lat
contiguous  arrays,  a  global  address  is  associated  to  the  local  search  cell  number  (line  2154  of
remap_conserv.f90) and the coordinates from grid_corner_lon and grid_corner_lat at the global address
are used.

Optimised strategy for storing the search cell addresses

In order to preselect all the cells of one grid whose bounding box crosses the bounding box of a given
cell on the other grid, we need a double loop on the grid: the first one to count the eligible cells and
allocate the work arrays and the second one to actually store the values.

In the original implementation, the costly test on the coordinates of the bounding boxes was performed
only once and the result stored in a logical array (srch_mask) of the size of the scanned grid to be
reused in the test of the second loop. Once again, this array should be duplicated (private) for the
OpenMP parallelisation.

In the new implementation, we perform the test on the coordinates in the second loop as well (pick1:
and pick2: loops at lines 504 and 1126 of remap_conserv.f90), but we restrain the loop range to the
minimal range of addresses that encompasses the selected cells in the first loop (loops gather1: and
gather2: in particular at lines 486-487 and 1108-1109 of remap_conserv.f90).
Another slight optimisation, at least for the intel compiler, comes from the use of nested IF statements
instead of a single condition with .AND. Since the fortran standard does not enforce the left to right
evaluation of the elements of a combined logical expression, at high optimisation levels (-O2 and -O3),
all the tests are performed even if one is failing (cf. the classical situation IF (x>0 .AND. sqrt(x)<a)
leading to floating point exception).  Nesting the IF statements grants that if  the first  test  fails, the
following are not evaluated. This optimisation is useful if one of the test has a larger probability to fail
(better if in the outermost IF) or if one of the test is costlier (better if in the innermost IF). Since grids
with regular resolutions have more longitude that latitude subdivisions, the test on the longitude should
be in the outer IF’s (because it has a larger probability to fail), yet,  the introduction of a more complex
test on longitude taking periodicity into account, suggested to take it to the innermost position (lines
480, 506, 1102, 1128 of remap_conserv.f90).

OpenMP compliant link storage

Since more than one side of a grid cell can cross the same cell on the other grid, more than one line
integral can provide a contribution to the same remapping link (same destination and source address
pair).
In the original version, a new contribution is stored as a new link only if a scan on the already stored
links finds no corresponding address pair. Conversely, if the address pair is found, the new contribution
is added to the weight of the link.

This approach is not viable for parallelisation since the order of the computations is unpredictable and
rush conditions are easily encountered.

In  the  new  version,  every  line  integral  contribution  is  stored  as  a  new  link.  This  work  can  be
parallelised and at the end of the parallel section, the single thread storages can be gathered into a
storage per MPI process and these storages finally gathered on the master process.



The remap weight storage is then sorted (as usual) by the sort_add routine that uses a heapsort on the
criterion “destination address first, the source address”. After the sorting all the contributions to the
same address pair are stored in contiguous positions.

We introduce the uniq_add (lines 576 and following of scrip.F90) that cumulates by sum the duplicated
links and reduces the size of the remapping storage. Instead of explicitly copying and shifting the links
we use the much more efficient pack fortran primitive.

Optimised search of dangling links (known as Valid-masked-masked points)

If all  the grid cells  intersected by the sides of a non masked destination grid cell  are masked, the
interpolation will not provide a valid result for the destination point. This situation is indicated as a
valid-masked-masked situation.  The value  of  the nearest  neighbour  non-masked cell  centre  on the
source grid will be assigned to the destination grid cell, if the user decides to activate this option added
in OASIS.

The first step is to detect the cells on the destination grid that are not listed as destinations of any link in
the conservative remapping.

In  the  original  version,  the  fracnnei_vmm routine  implemented  exactly  this  logic:  a  loop  on  the
destination  grid  and  for  every  cell  a  scan  of  the  link  storage  searching  for  at  least  a  matching
destination address. If a link is found, the cell is flagged out by the logical array lnnei selecting the
points for which the next neighbour search is needed. The complexity of the search increases as the
product of the grid size and of the number of active links.

In the new version a single scan of the link storage is needed to flag out the destination links addresses
from the lnnei array.

The computing time (for the whole next neighbour treatment, including the neighbour searches) for the
T359 to the orca025 grid falls from 293 to 5.9 seconds.

Optimised version of the nearest neighbour search fracnnei.F90

To find the nearest  neighbour,  the source grid is  scanned and the angular  distance (greater  circle)
between the non masked cell centres and the destination cell centre is computed to find the minimum
distance.
In the original version, the additional links are stored in temporary arrays that are added to the link
storage only afterwards.
In  the  new  version,  the  link  storage  size  is  increased  beforehand  (line  156  and  following  of
fracnnei.F90) and the additional links are immediately stored there with no need of extra work memory.

In the original version, the destination grid is swept with a loop on the whole grid, skipping the points
for which the nearest neighbour computation is not necessary (lnnei array acting as a mask), while in
the new version the loop is on the number of additional links and indirect addressing is used (line 241
of fracnnei.F90). In this way this loop can be easily parallelised by OpenMP and will be naturally load
balanced.

As a further optimization, the angular coordinates (using trigonometric functions) on the source grid
are computed only once, and not recomputed for every additional link as in the original version (line



163 and following of fracnnei.F90).

Conclusions on the parallelisation strategy

After the rewriting of remap_conserv and fracnnei, the time spent for the detection of the repeated
points, for the centroid computation, the checks, the sorting of the links and the condensation of the
repeated links is low enough to keep these steps sequential.

In  the  fracnnei  routine  the  loop on the  additional  links  for  the  search  of  the  non masked nearest
neighbour can be easily and effectively parallelised by OpenMP. Since the number of additional links is
of several orders of magnitude less than the size of the grids (especially if the resolution of the two
grids is close), the overhead of communications for the hybrid parallelisation will not be paid back. 

Most of the computing time is spent in the sweep loops and as they have been rewritten they can easily
be parallelised with the hybrid MPI+OpenMP approach used for the other remappings (explicit splitting
of  the  outermost  loop among the  MPI  processes  and,  on  each  MPI  process,  among the  OpenMP
threads; no need, in this case, to precompute the distribution of the masked cells;partial private link
storage on each thread, gathered afterwards in a shared storage on each process and finally gathered on
the master MPI process).

The parallel  load  balancing depends on now many intersection and line integral  computations  are
necessary for each of the assigned destination grid cells.
The number of the tentative cell intersections to be checked depends on the effectiveness of the binning
and bounding box overlapping restrictions. In the original version, the bounding boxes turn out to be
excessively large in many cases and seriously reduce the effect of the restrictions. This point deserves a
thorough analysis (see next section).
The number of  line integral computations depends on the difference between the local resolution of the
two grids. In the case of the mapping between an oceanic grid with polar (north) refinement and a
reduced atmospheric grid with low resolution at high latitudes, the cells at high latitudes will require
more computations. For this reason, it could be interesting to check the impact on performances of the
choice of a round-robin distribution of the loops against a contiguous one, knowing that the latter is
much simpler and requires one less level of indirect addressing. 

Analysis of the bounding box definitions in grids.f90

The efficiency of both restrictions of the computations in the grid sweeps entirely relies on a correct
and coherent definition of the bounding boxes of the source and destination grid cells.

For the conservative remapping, the grid cell corners are a mandatory input, therefore the bounding box
are  defined  by  the  coordinates  of  the  most  external  corners.  In  principle,  a  lon/lat  rectangle
encompassing all the corners is defined.
In practice, however, scrip moves the longitude of all the corners, one by one, in the [0,2π] interval,
before computing the bounding boxes. For this reason, cells that span across the longitude periodicity
threshold will be stored with some corners close to 0 and some close to 2π.
Since the east boundary of the cell is assigned to the corner with the smallest longitude (and vice-versa
for  the  west  boundary),  in  such  cases,  the  corners  are  swapped  and  therefore  the  bounding  box
meaningless (they take the complement of the real longitude bounding segment).
Moreover, since the tests on bounding box boundary longitudes are implemented simply as “less than”
or “greater then”, they cannot account for periodicity.



Also,  bounding  boxes  spanning  more  than  π  rad  in  longitude  (officially  not  supported)  are
automatically extended to [0,2π] and they do not intervene in the sweep restrictions.

A specific attention is paid to polar cells. Scrip tries to detect them by the consideration that the north
and south boundaries are on the opposite sides of the pole. If the centre of the cell is close enough to
the pole both boundaries will have a smaller latitude than the centre.
In such a case, on a quite arbitrary base, scrip extends up to π (90N) the boxes whose larger latitude is
smaller than the latitude of the centre and down to -π (90S) the boxes whose smaller latitude is larger
than the latitude of the centre. Not only this test does not detect all the possible pole crossing cases, but
it acts on some specific orca grid twisted boxes (as stored in old grids.nc files) for which the centre
does  not  fall  inside  the corners,  irrespectively of  the  position  of  the cell.  Some cells  close to  the
Antarctic coast are extended up to 90N. Notice that these cells spanning almost the whole latitude
range, seriously impact on the efficiency of the binning. 

New strategy for the bounding boxes

We suggest a new strategy for a better definition of the bounding boxes. 
It relies on the hypotheses that all the corners in grids.nc are entered with the same periodicity module
than the corresponding centre.
As an example, if the centre of a grid with periodicity at 180 is at -179 and the corners are at two
degrees on each side, they have to be entered as -181 and -177, and not as 179 and -177.
Similarly, if the centre of a grid with periodicity at 0 is at 1 and the corners are at two degrees on each
side, they have to be entered as -1 and 3, and not as 359 and 3.

This is required in the OASIS documentation, but some legacy files do not respect the convention,
therefore an initial check is performed: if the corners longitude range extends beyond π, it means that
they have not been entered following the convention (the test holds because real cells extending on
more than 180 deg. are not allowed in OASIS). In such a case, we’ll impose that all the corners will lay
in the same range as the centre (lines 370 and following of grids.f90).

Once we know that all the corners have been entered in the same range as the centres, we can move all
the centres inside the [0,2π] interval, moving all the corners of each cell together with the centre (lines
412 and following of grids.f90).
In the example of a centre in -179 and corners at 179 and -177, the first check corrects the left corner as
-181, then the whole cell is moved by +360 to [179,183].

The bounding box can now be safely computed using the minimum and maximum coordinates of the
corners (lines 635 and following of grids.f90)

By construction, since all the centres lay in the [0,2π] interval, at least one boundary of the bounding
box falls inside the [0,2π] interval.
In order to specialize the longitudes comparison to different periodicity configurations, we class the
grid cells in three classes:
class 0 contains the cells with bounding box fitting entirely in [0,2π].
class -1  contains the cells with the west boundary smaller than 0 and the east boundary in [0,2π].
class 1 contains the cells with the west boundary in [0,2π] and east boundary larger than 2π
(lines 794 and following of grids.f90).

We introduced a partial fix for the excessive latitude extension of the bounding boxes (lines 800 and



following of grids.f90). 
If the centre of the grid is to the north of the north boundary of the bounding box, then the box is
extended north up to the centre if the centre is south of 60N and up to the north pole if the centre is at
high latitudes.
Conversely, if the centre of the grid is to the south of the south boundary of the bounding box, then the
box is extended south up to the centre if the centre is north of 60S and up to the south pole if the centre
is at high southern latitudes.
This correction fixes the problem of artificially large bounding boxes, yet it  does not address in a
satisfactory way the detection of cells encompassing the poles.
Since some of such cells result in large longitude extensions (the corners being on the opposite side of
the poles) we preserve the correction extending to [0,2π] the longitude of bounding box, moreover, for
high latitudes we extend the box up to the corresponding pole. The test on “the longitude size being
larger than π has been relaxed to take into account the rounding errors while converting degrees to
radians and while translating the corners across periodicity (lines 702 and following of grids.f90).

Once the bounding boxes have been built we are free to move the corners longitudes inside the [0,2π]
interval to stay closer to the rounding errors of the old strategy, yet this transformation is absolutely not
necessary (lines 846 and following of grids.f90).

New bounding box intersection test in remap_conserv.F90

With the adoption of the new storage for the bounding boxes we need a new test strategy on longitude
intersection, taking the periodicity into account.
The old strategy was to compare the longitude of the west boundary (stored in position 3) and the east
one (stored in position 4) of the bounding boxes for pairs of destination and source grid cells.

The four cases for intersection are represented in Figure 1 and they can all be detected by the logical
check that “the west boundary of the source cell is west of the east boundary of the destination cell
AND the east boundary of the source cell is east of the west boundary of the destination  cell”.

When both the destination cell (red in the figure) and the source cell (green in the figure) fall inside the
[0,2π] interval (both are of kind 0), the longitudes can be directly compared and the test will read “the
longitude of the west boundary (stored in position 3) of the source cell is smaller or equal than the
longitude of the east boundary (stored in position 4) of the destination cell AND the longitude of the
east boundary (stored in position 4) of the source cell is greater or equal than the longitude of the west
boundary (stored in position 3) of the destination cell”

Figure 1

Cells  crossing  the  periodicity  threshold  necessarily  cross  each  other  since  they  have  at  least  the
threshold value in common. Therefore, if the destination cell crosses the periodicity threshold,(kind= –
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1 or kind = 1) a specific test has to be performed only with source boxes falling inside [0,2π] (kind=0)

In the case of a destination cell with the west corner stored with a negative longitude, the four cases of
intersection are represented on the left side of Figure 2. Crossing with cells close to 0 is checked with a
single standard test in [0,2π] on the east side of the destination cell whose longitude has to be larger
than the longitude of the west side of the source cell. Crossing with cells close to 2π, represented by
their  modulo image in  Figure 2,  is  checked with a  single periodicity test  on the west  side of  the
destination cell whose longitude, incremented by 2π has to be smaller than the longitude of the east side
of the source cell.  Conversely it  is easy to devise the tests for the three remaining configurations:
destination cell kind = 1 and source cell kind = 0 (right side of Figure 2), destination cell kind = 0 and
source cell kind = –1 (left side of Figure 3), destination cell kind = 0 and source cell kind = 1 (right side
of Figure 3).

Figure 2

Figure 3

Impact on the performances

The  adoption  of  the  new  bounding  box  definition  has  a  strong  impact  on  the  restriction  of  the
computations in the remap_conserv grid sweeps.
With  the  old  strategy in  many cases,  the  number  of  preselected cells  for  the computation  of  side
intersections  (variable  num_srch_cells)  is  excessively high.  This  has  three  negative  consequences:
excessive  computing  time,  excessive  work  memory storage,  unbalanced  computational  load  while
parallelising the sweeps, since the high values of num_srch_cells are not equally distributed and cannot
be computed beforehand.
As shown on Figure 4, where we compare the number of preselected search cells (num_srch_cells) for
every destination grid cell in the two sweeps (linear y scale in the top panes, logarithmic y scale in the
bottom panes, red crosses for the old bounding box definition, green crosses for the new ones), not only
the number drops of roughly two order of magnitudes, but the distribution is more uniform. Always
notice the increase on preselected cells in the polar regions (the leftmost and rightmost extremities of
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the plot) due to large cells in the T359 grid. 

Figure 4

Another important effect is that the first level of computation reduction is based on the latitude binning
of the grids cells. Since a cell is assigned to every bin intersected by the cell bounding box, with the old
strategy some cells belong to all bins, pushing the associated min and max bin addresses to too large
values, with a drastic reduction of the binning effectiveness.
For instance, on an Intel(R) Core(TM) i7-4930MX with 3.0GHz clock, the generation of the remapping
from orca025 to T359 with the old bounding box definition takes 851 seconds without binning but still
840 seconds with 500 latitude bins (273 in the first sweep and 565 in the second), while with the new
bounding box definition it takes 821 seconds without binning and the time drops to 40 (15 in the first
sweep and 23 in the second) seconds with 500 bins.



Appendix 2
Bins definition and determination

In order to restrict the search loops in the remapping matrix computation, SCRIP introduced a latitude
binning strategy. Bins are meant to associate index spans in both grids representation to latitude bands.
With  different  implementations  for  the  different  remappings,  they can  therefore  be  used  to  target
subsets of the grids before performing further matching tests or brute force searches.
In recent SCRIP versions a rectangular binning in both latitude and longitude has been implemented as
an option.

The  binning  has  been  most  probably  originally  designed  and  implemented  for  the  conservative
remapping on logically rectangular grids (and in such configuration they are robust and quite effective)
and its  use  has  been  further  extended to  other  remappings  in  SCRIP (nearest  neighbour,  bilinear,
bicubic)  and  in  the  SCRIP extensions  for  OASIS  (reduced  grids,  minimal  information  on  grids
descriptions).

Let’s point out an important remark having several implications in the following: neither SCRIP, nor its
wrapping in OASIS impose any constraint or convention in the way the grid cell are numbered and
therefore sorted in the input netcdf files grids.nc and similar.
Each grid is therefore internally represented as a collection of 1D arrays (at least one for the latitude
and one for the longitude of the grid cell centres) in the same order as used in files: no hypothesis is
made on a relation between the storage index progression and the geographical coordinates growth.
We’ll see later that in some specific cases some computations rely heavily on this assumption, leading
to some potential error, but we must stress here, that even in the safe cases, the effectiveness of the
latitude binning depends on the order of the storage: since a bin is just identified by the min and the
max index in the grid storage granting that all the cells falling in the latitude bin are included in the
index range, the restriction on the range is effective only if the grids are stored with the longitude
increasing first.  Paradoxically,  for the opposite storage strategy (latitude increasing first), every bin
would be associated to the whole index range (but a few elements), with no effect on the optimization.

The original latitude bins are internally stored using three 2D vectors:
bin_lats(1,n) and  bin_lats(2,n) respectively are  the  minimum and the  maximum latitude  (in
radians) covered by bin n. 
Notice that the binning splits the global [-π/2,π/2] interval even for limited area grids.
For NBINS bins, bin n covers the [-π/2+(n-1)*π/NBINS, -π/2+n*π/NBINS] interval.

bin_addr1(1,n) and bin_addr1(2,n) respectively are the minimum and the maximum index in the
source grid storage granting that all the cells associated to bin n are certainly spanned if ranging from
the  minimum  to  the  maximum  index.  Notice,  once  again,  that  not  all  the  cells  between
bin_addr1(1,n) and bin_addr1(2,n) belong to bin n: we can only say that all the cells associated to
bin n fall between these two indices. As a consequence, even if the latitude bins are a non overlapping
split (but for the boundaries) of the Earth, the index bins can largely overlap depending on the grid
storage order.

bin_addr2(1,n) and bin_addr2(2,n) store the same information for the destination grid.

The association between cells and bins is based on the cell bounding boxes: a cell is associated to a bin



if its bounding box intersect the bin i.e. a cell is associated to all the bins covering the latitude extent of
its bounding box. Since the bins always cover the full [-π/2,π/2] interval, every cell is associated to at
least a bin.
Notice that a single cell is potentially associated to more than 1 bin even if it centre falls necessary in a
single bin (but for the boundaries)  because its  bounding box can cross the bin boundary (or even
several boundaries if the bin extent is smaller than the local latitude resolution).

The  accuracy  of  the  bin  associated  therefore  depends  on  the  accuracy  of  the  bounding  box
determination.
If  corners  are  available,  the  bounding  box  is  based  on  the  minval  and  maxval  of  the  corners
coordinates. This is a quite robust definition, coherent with the way SCRIP parametrize the cell sides
(i.e.  as a segment of great circle passing by two corners. Notice that this  parametrization fails for
curvilinear grids with high curvature, for which a curved side can extend outside the rectangular box
encompassing the corners).
Unfortunately, for the usage of SCRIP in OASIS, the corners are read in from the coordinate file only
in case of conservative remapping. 
For the other remappings, the corners are neglected even if they are stored in the file and the bounding
box is  estimated  by the  relative  position  of  the  grid centres.  The algorithm relies  on the  implicit
hypothesis that the grid is Cartesian and stored with longitude increasing first, therefore it is only valid
for LR global grids (with a tentative correction to catch up for limited area grids) with limited rotation
of the cells w.r.t.  to the i=lon and j=lat axes and requires the convention to sort the grid stored in
grids.nc by increasing longitude first and latitude later.
In the current implementation, this definition introduces an error for other grids that can lead to wrong
or incomplete binning.

In the case of bilinear or bicubic remappings from source global reduced grids (grids for which the
number  of  longitude  subdivisions  varies  with  the  latitude),  a  specific  bin  decomposition  has  been
introduced.  Notice  that  this  technique  does  not  require  the  bounding  boxes  since  it  relies  on  the
consideration that the reduced grids are oriented in the latitude and longitude directions and therefore
that a cell coincides with its bounding box).
Yet, once again,  it  requires a convention on how to sort the grid stored in grids.nc: by increasing
longitude first and by decreasing latitude. Independently of the number of bins indicated by the user,
the final number of bins coincide with the number of latitude circles in the grid (minus one, to be
precise).
This  assumption  conceptually  differs  from  the  original  definition  for  two  important  features:  the
number of bins depends on the grid and it is not the same for both source and destination grids and the
latitude extent of each bin is potentially different (if the latitude deltas on the grid are not constant, as it
happens for Gauss grids).
It defines one 2D vector and one 4D vector:
bin_lats_r(1,n) and bin_lats_r(2,n) respectively are the latitude of the centre of the cells on row
n and and of  the  centre  of  the  cells  on  row n+1.  Remember  that  because  of  the  specific  storage
convention,  row  n+1  is  south  of  row  n  and  therefore  bin_lats_r(2,n) is  smaller  than
bin_lats_r(1,n). Notice that the bins do not span the whole Earth since they skip the very high
latitudes beyond the grid centres of the first and last latitude circle.
bin_addr1_r(1,n) and bin_addr1_r(2,n) respectively are the first and last index in the source grid
storage for the latitude circle n.
bin_addr1_r(3,n) and bin_addr1_r(4,n) respectively are the first and last index in the source grid
storage  for  the  latitude  circle  n+1  (for  the  last  value  N  of  n,  bin_addr1_r(3,N) and



bin_addr1_r(4,N) are  set  to  the  values  of  bin_addr1_r(1,N-1) and  bin_addr1_r(2,N-1)
respectively.  A  doubt  arises  here,  it  it  should  have  been  either  bin_addr1_r(1,N) and
bin_addr1_r(2,N) or bin_addr1_r(3,N-1) and bin_addr1_r(4,N-1))

Bins utilisation in different remaps

conserv (N.B. only robust case for all grids)

Aim: to restrain the search interval for the bounding box intersections during grid sweeps
Implementation: starting from point grid1_add on grid 1, loop on all the bins and if the bounding box
of grid1_add intersects bin n for grid 1 (Notice the use of the bins for the same grid the point belongs
to),  update  the  min  and  max  addresses  for  the  loop  on  grid  2  to  be  sure  to  include  index
bin_addr2(1,n) on the min side and index  bin_addr2(2,n) on the max side in the search loops
range.
Therefore  if  grid1_add bounding  box  crosses  more  than  one  bin,  the  search  loop  will  span  the
ensemble of the representations of these bins on grid 2.
This implementation is robust because the same numbering of the bins has been used for both grids, the
bin splitting covers the whole Earth and their representation on both grids are used.
Potential extensions: use of the bins to restrict the search for overlap points in TREAT_OVERLAY and for
the search of the nearest neighbour in case of missing weights (fault of grid overlap)
 
bilinear and bicubic

Aim: to restrain the search of the source grid cell whose bounding box contains the destination grid cell
centre
Implementation: direct comparison of plat and plon (coordinates of the destination grid cell centre)
and the bin_lats bounds of the source grid.
Caveat:  if a grid point has at least one neighour from the original bilinear/bicubic stencil masked, it is
handled,  in the current implementation, by a distance weighted sum of the 4 nearest neighbour values.
The nearest neighbour search is restricted by the same binning, leading to a strong dependency of the
relative position of the selected points and the size of the bins.
Note:  if  a destination point  falls  outside the source grid bin coverage the search loop is  not  even
performed and the complementary nearest-neighbour search on the whole grid is activated.

bilin and bicubic for reduced source grids

Aim: to restrain the search of the source grid cell whose centre is the nearest to the destination grid
centre
Implementation:  direct comparison of plat and plon (coordinates of the destination grid cell centre)
and the bin_lats_r bounds of the source grid. Detect grid cells falling beyond the grid centres of the
first and last latitude circle. For the points too far north, the min_add for the source grid search is set to
0, for the points too far south, the max_add for the source grid search is set to nx+1, nx being the size of
the grid. In both cases, the search if flagged as invalid, but the information on min_add and max_add is
later used for the alternative nearest neighbour interpolation.
For destination grid cells falling inside the latitude source grid extent, the bin indices bounds are used
to restrain the search for the search on the longitude coordinate.
Caveat:  notice  the  specific  convention  for  storing  reduced  grids:  the  latitude  is  decreasing.  If  the
convention is not respected, the bins definition will not fail but the search grid will systematically reject



points and the interpolation will become a 4 points distance weighted nearest neighbour.

nearest neighbour (dist or gaus)

Aim: to restrain the number of evaluation of the angular distance between the destination cell centre
and the source grid cell centres (costly because trigonometric)
Implementation:  direct comparison of plat and plon (coordinates of the destination grid cell centre)
and the bin_lats bounds. If  the destination grid cell centre belongs to bin n, uses bins n-1, n, n+1 to
select the range (on the source grid) for the angular distance computation.
Caveat: for a large number of bins when looking for a large number of neighbours, taking three bins
could not be enough and the search could fail.
Moreover, the search simultaneously looks for the nearest non masked point to be used if the nearest
neighbours (in an absolute sense) are all masked. For very high resolution grids, this point could be
outside the 3 bins.
On the other way, for unstructured source grids without any sorting of the coordinates storage, the
indices associated to the bins could potentially include the whole grid with no real reduction of the
source grid search.
Potential extensions: introduce a quick but rougher distance estimate in order to discard source grid
points from the search with a cut-off test instead of trying to limit the search range by bins.



Appendix 3
Bi-linear/cubic remapping bug

In the case of bilinear and bicubic remappings, grids cells are not defined as tiles surrounding the grid
centre, but rather as the logical rectangles connecting four neighbouring grid centres.
Cells  take  their  number  from the  logically  south  western  corner  (better  stated  as  the  corner  first
encountered in the centres array). This is the point counted as 1 in the cell. Point 2 is the logically south
east corner (it is obtained by mapping back the first corner address to the  i and  j grid indexes and
recomputing the address for i+1 and j) and it is also noted as point e (east of the first corner). Point 3 is
the logically north east corner (i+1, j+1), also noted as point ne (north-east of the first corner). Point 4
is the logically north west corner (i, j+1), also noted as point n (north of the first corner).

Because of the periodicity, since all the centres coordinates have been translated into the [0,2π] interval,
the longitude of the east and north-east points can be numerically smaller than the longitude of the
reference point 1, if this one is close to 2π rad of longitude.

Once again, the bounding boxes being defined by the minimum and maximum numerical values of the
longitudes,  for  the  grids  encompassing  the  periodicity  threshold,  the  bounding  box  longitude
boundaries are meaningless and for such grids, the bounding box only limits the latitude.
Notice that for the cells not crossing the periodicity threshold, if the grid is not twisted nor rotated, the
bounding box coincides with the cell, otherwise it defines the minimum longitude-latitude rectangle
containing the cell.

Given  a  destination  point  of  coordinates  plon,  plat,  the  source  grid  is  searched  to  find  the  cell
containing the destination point.

The search is in two steps: first only the cells whose bounding box contains the destination point are
selected, then for these cells a cross product based criterion is applied.

The bounding box criterion is based on the plain numerical comparison of coordinates:
bounding box min longitude ≤ destination longitude ≤ bounding box max longitude
bounding box min latitude ≤ destination latitude ≤ bounding box max latitude

If the source grid is not twisted nor rotated only one box contains the destination point, otherwise it is
contained in the overlapping bounding boxes of the cells neighbouring the true source cell.

Notice that, by construction, the cells crossing the periodicity threshold are searched for all destination
points with latitude falling in the latitude bounds of the cell.

The cross product criterion aims to assess if the destination point lays always to the right or always to
the left of all the sides of the cell. It translates, mathematically, by checking that the cross product
between the vector corresponding to a cell side and the vector extending from the beginning of the cell
side to the destination point has the same sign for all the cell sides.

The way the sign comparison is implemented has a flaw: it tests if the product of the last and the
current evaluation of the cross-product is not strictly < 0. If the two first cross product have the same



sign and the third one 0, regardless of the sign of the fourth and last cross-product, the product of the
third and fourth results is 0, therefore not  strictly < 0 and the cell is accepted.

This situation arises if the destination point is aligned with the logically north side of the cell.

Even  if  the  bggd  and  nogt  grid  resolutions  are  different,  this  situation  happens  in  the  case  of  a
destination point from nogt (ORCA1) on the equator and the grid cells from bggd (LMDZ) just under
the equator.

Yet for the source grid cells away from the periodicity threshold (rough hashing), the destination point
does not fall inside the bounding box (pink lines) and the cross product is not even evaluated. For the
cells  that cross or touch the periodicity threshold (fine hashing),  the bounding box only limits  the
latitudes, therefore the cross-product is evaluated and the cell is chosen,

In the bggd nogt case, it happens for the destination points (ORCA1) with longitudes 177.5, 178.5,
179.5 and latitude 0 that are all assigned to the bggd cell with corners with longitude 357.5 and 0 and
latitude -1.268 and 0.
Notice that for points on the equator with longitude smaller than 177.5, they are considered to the left
of the 1-2 side (south) and to the right of the 2-3 side (east) therefore this source grid is rejected.
For  points  on  the  equator  with  longitude  larger  than  180.0,  even  if  they  fall  in  the  degenerated
bounding box and would pass the cross-product test,  they do not represent a problem because the
correct source cell has a lower index than the flawed one, therefore the search loop is interrupted before
testing for the flawed cell.

Two fixes now solve the problem:

1. In the cross-product test, do not consider the null cross-products in the sign evaluation
Replace the line
cross_product_last = cross_product
by
if (cross_product.ne.0) cross_product_last = cross_product

2. In the bounding box definition, assing kind 0 to standard cells, then  detect grids crossing the
periodicity threshold  (they have  longitude  size  >  π),  switch  the  upper  and lower  longitude
bounds and assign to them kind 1 (notice that all the cells are constructed toward the East of the
reference point, therefore only the crossing beyond 2π has to be dealt with). 
In the bilinear remapping modify the bounding box test from
        if (plat <= src_grid_bound_box(2,srch_add) .and.  &
            plat >= src_grid_bound_box(1,srch_add) .and.  &
            plon <= src_grid_bound_box(4,srch_add) .and.  &
            plon >= src_grid_bound_box(3,srch_add)) then
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to a detailed test (see function lf_lon_in_box) using the same test if the grid kind is 0 but, for 
grid kind 1 (notice  the OR condition)
            plon <= src_grid_bound_box(4,srch_add) .or.  &
            plon >= src_grid_bound_box(3,srch_add)
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