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Abstract

A library  that controls of MPI process placement and OpenMP thread affinity  at run-time
(HIPPO) is  introduced in OASIS and used to perform SCRIP interpolation  with  the most
efficient  decomposition,  without  using  environment  variable  and  allowing  a  different
parallelism  in  the  rest  of  model  computations.  Our  tests  shows  that  performances  are
preserved and that differentiated parallel layouts are correctly set from SCRIP and further
calculations  like  the  NEMO ocean  model  in  its  BENCH configuration.  Preliminary  results
suggests that the NEMO code itself could benefit of different parallel layouts.



1. Rationale 

Computations of the SCRIP interpolation package [1] included in the OASIS coupling library [2]
were recently distributed and multi-threaded [3] to improve their performance. Basically, at
coupled model initialisation phase, the SCRIP library can be called to calculate the interpolation
weights and addresses. These variables will be used to perform the coupling field interpolations
needed afterward in the model time loop. During the initial phase, on each computing node,
are deployed a predefined number of OpenMP threads, which is supposed to be optimal if
corresponding to the total number of physical cores per node. At the same time, every MPI
processes but the first of the node are left idle and blocked on a passive MPI barrier. In some
cases, the calling coupled model(s) could also require a mixed MPI-OpenMP decomposition,
which ratio could be different from the SCRIP one. In this cases, the environment variables  that
define  the  number  of  OpenMP  threads,  OASIS_OMP_NUM_THREADS (for  SCRIP)  and
OMP_NUM_THREADS (for the rest of the code) have to be defined with different values.

This approach leaves some constraints:
-  the  OpenMP  affinity,  prescribed  via  environment  variable  (KMP_AFFINITY)  is
necessarily the same for SCRIP and the rest of the code,
- the passive mode of the MPI barrier needs to be prescribed, in some machines, via an
environment variable (I_MPI_WAIT_MODE). This status of the MPI library cannot be
changed at runtime and could severely slow down the MPI exchanges occurring during
the model integration,
-  possible developments  of  the  OASIS  library  (dynamic  coupling,  required  by  new
Lagrangian based definition of the discretisation, see e.g. [4]) would required to call the
SCRIP package in the time loop. An alternate calling of code sections with different
optimal  MPI/OpenMP  ratio  or  OpenMP  affinity  would  be  even  more  crucial  for
performance.

The  recent  development  of  the  HIPPO library  [5]  brings  a  compact,  portable,  compiler-
independent set of APIs and makes possible a fine and dynamic hybrid parallel definition from
inside  a  C  or  FORTRAN  code.  Hosting  HIPPO  functions  in  OASIS  (a.k.a.  “Opération
Caravanserail”) should ensure the maximum independence of MPI/OpenMP definition for SCRIP
routines in one hand and the rest of the code on the other hand. Our first implementation
aims to:

- verify that the previous external parallel profile (MPI/OpenMP ratio, MPI and OpenMP
environment variables), or  HIPPO layout, can be redefined at runtime via HIPPO APIs
without performance loss,
-  check  that  this  layout  can  be  changed  after  SCRIP  calculation  to  let  the  model
calculations be performed at maximum speed

2. Implementation

To make the HIPPO library available, one would have to also previously install :
• the  Portable  Hardware  Locality  (hwloc)  software  package  [6]  which  provides  a



portable abstraction (across OS, versions, architectures, ...) of the hierarchical topology
of modern architectures, including NUMA memory nodes, sockets, shared caches, cores
and simultaneous multithreading

• the  research  project  [7]  which  led  to  the  implementation  of  the  hsplit  library  for
hierarchical splitting of MPI communicators.

Both  libraries,  and  HIPPO APIs  were  quickly  compiled  on  the  beaufix21 Météo-France
supercomputer, relying on Intel v16.1.150 and associated v5.1.2.150 MPI library.

Since  testing  is  the  only  goal  of  this  exercise,  and  HIPPO  an  still  ongoing  project,  the
comprehensive transformation of all SCRIP interpolations available in OASIS was not necessary.
We focus  on 1st order  conservative (CONSERV)  and gaussian (GAUSWGT) options,  which
exhibit two different and typical scalability profiles.

On a first  step,  the setup of the HIPPO layout  that  will  be used in the SCRIP routines  is
performed at the very  beginning of the MPI communicator definition (oasis_init_comp
routine). HIPPO API is called to simultaneously (i) select the number of MPI processes that will
be mapped and bound to perform the SCRIP calculations, (ii) define the number of OpenMP
threads that will be forked per MPI process and (iii) set the aff inity of these OpenMP threads.
Notice that at this stage, the MPI OpenMP threads can be forked to all processing units (PU) of
the node. If hyperthreading is activated on the machine (which is the case for  beaufix2) ,
hyperthreaded calculations  can be  prescribed  here.  The  layout  definition  is  now internally
defined and does not depend on environment variables. However,  KMP_AFFINITY must be
set to “respect,none", to let HIPPO modify these values at runtime.

On a second step, just before OpenMP parallel section (SCRIP weight and address calculations,
remap_conserv &  remap_dist_gaus_wgt subroutines), we get the threads number as
defined  previously  via  HIPPO for  SCRIP  calculation  purpose  and  organise  accordingly  the
OpenMP parallel  loop.  At  loop  start,  threads  are  effectively  bound  with  the  appropriate
affinity, calling the HIPPO_Layout_omp_thread_bind API.

Two toy models, derived from the example available within the OASIS3-MCT v4 we used in this
study2,  are  adapted  to the  purpose  of  the  experiment.  After  the  definition  phase  of  the
interpolation  (performed  at  initialisation  in  oasis_endef routine),  fake  calculations  are
performed and exchanges periodically  made between the two toys  to simulate  a  realistic
communication pattern between both.

3. Results

We first  check that  the default  behaviour of the SCRIP parallel  profile can be reproduced
during the “weight and address” calculation phase of the coupled run, without performance
loss. On Figure 1a & 1b, we can deduce from the blue and red lines (respectively before and
after HIPPO instrumentation, 1 MPI per node, 40 threads per MPI process, alternate aff inity)
than our modifications do not badly affect  SCRIP parallel performances. In the case of the

1 https://www.top500.org/system/178962
2 Directory: oasis3-mct/examples/test-interpolation

https://www.top500.org/system/178962


conservative interpolation (Fig. 1b), we can even notice a small improvement. 

Figure 1: restitution time of SCRIP weight and address computation for gaussian (left) and 1st

order conservative (right) interpolation, with various MPI tasks/OpenMP threads ratio, as
calculated with and without (blue lines) OASIS3-MCT v4.0 HIPPO-instrumented library

Different ratios of MPI tasks/OpenMP threads lead to different results. The allocation of 2MPI
tasks  per  node  downgrades  the  scalability  of  both  interpolations.  At  the  opposite,  the
algorithm seems to take benefit of multi-threading (1 task MPI per node, 80 threads) but mainly
for  the  smaller  values  of  node  number.  Aff inity  of  OpenMP threads  (alternate,  compact,
scatter) has no significant effect (values not shown).

Figure  2:  Accumulated  restitution  time  for  SCRIP
(red) and NEMO-BENCH (green) computations, with
different  parallel  threading  (for  SCRIP)  and  MPI
decomposition (for NEMO-BENCH)



HIPPO most  interesting  capability  gives  the  possibility  to  switch  hybrid  parallel  profile  at
runtime. To better test this functionality, we introduce larger calculations, the NEMO BENCH
configuration [8],  in one of our toy models.  Our test  shows that it  is possible to efficiently
launch hybrid parallel  calculations  during SCRIP calculation phase and MPI  only  calculation
during the  NEMO BENCH part  of  the  code.  This  dynamical  change of parallelism type  is
controlled by HIPPO: two different layouts are defined and used sequentially for SCRIP and
NEMO routines.  Figure 2 shows that the fastest hybrid parallelism is obtained with 80 OpenMP
threads, on 40 physical cores, because the compute intensive SCRIP routines can take benefit of
hyper-threading. At the opposite, the NEMO-BENCH routines have better performance if only
40 MPI processes are used. 

However, a closer look to NEMO internal profiling reveals that some routines (from which the
more  time  consuming,  zdf_phy),  more  compute  intensive,  can  be  accelerated  by  hyper-
threading (zdf_phy from 19 to 17.5s),  while most of the others are slew down. This suggests
that  a  different  decomposition  should be used for  these  two different  kind of routines.  In
particular,  an  appropriate  OpenMP parallelism,  only  set  via  HIPPO with  the  appropriate
binding/pining for the compute intensive routines, could enhance the total NEMO performance.

The authors acknowledge the Météo-France machine administration for having facilitated the
scalability  test.  This work has benefited from the IS-ENES3 project, funded by the European
Union’s Horizon 2020 research and innovation programme under grant agreement No 824084
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