
Performance evaluation of the hybrid interactive placement
with HIPPO of SCRIP interpolation tasks

E. Maisonnave, A. Piacentini

WN/CGCM/19/94

Table of Contents
1.Rationale...3
2.Implementation..3
3.Results..4

Abstract

A library that controls of MPI process placement and OpenMP thread affinity at run-time
(HIPPO) is introduced in OASIS and used to perform SCRIP interpolation with the most
efficient decomposition, without using environment variable and allowing a different
parallelism in the rest of model computations. Our tests shows that performances are
preserved and that differentiated parallel layouts are correctly set from SCRIP and further
calculations like the NEMO ocean model in its BENCH configuration. Preliminary results
suggests that the NEMO code itself could benefit of different parallel layouts.

1. Rationale

Computations of the SCRIP interpolation package [1] included in the OASIS coupling library [2]
were recently distributed and multi-threaded [3] to improve their performance. Basically, at
coupled model initialisation phase, the SCRIP library can be called to calculate the interpolation
weights and addresses. These variables will be used to perform the coupling field interpolations
needed afterward in the model time loop. During the initial phase, on each computing node,
are deployed a predefined number of OpenMP threads, which is supposed to be optimal if
corresponding to the total number of physical cores per node. At the same time, every MPI
processes but the first of the node are left idle and blocked on a passive MPI barrier. In some
cases, the calling coupled model(s) could also require a mixed MPI-OpenMP decomposition,
which ratio could be different from the SCRIP one. In this cases, the environment variables that
define the number of OpenMP threads, OASIS_OMP_NUM_THREADS (for SCRIP) and
OMP_NUM_THREADS (for the rest of the code) have to be defined with different values.

This approach leaves some constraints:
- the OpenMP affinity, prescribed via environment variable (KMP_AFFINITY) is
necessarily the same for SCRIP and the rest of the code,
- the passive mode of the MPI barrier needs to be prescribed, in some machines, via an
environment variable (I_MPI_WAIT_MODE). This status of the MPI library cannot be
changed at runtime and could severely slow down the MPI exchanges occurring during
the model integration,
- possible developments of the OASIS library (dynamic coupling, required by new
Lagrangian based definition of the discretisation, see e.g. [4]) would required to call the
SCRIP package in the time loop. An alternate calling of code sections with different
optimal MPI/OpenMP ratio or OpenMP affinity would be even more crucial for
performance.

The recent development of the HIPPO library [5] brings a compact, portable, compiler-
independent set of APIs and makes possible a fine and dynamic hybrid parallel definition from
inside a C or FORTRAN code. Hosting HIPPO functions in OASIS (a.k.a. “Opération
Caravanserail”) should ensure the maximum independence of MPI/OpenMP definition for SCRIP
routines in one hand and the rest of the code on the other hand. Our first implementation
aims to:

- verify that the previous external parallel profile (MPI/OpenMP ratio, MPI and OpenMP
environment variables), or HIPPO layout, can be redefined at runtime via HIPPO APIs
without performance loss,
- check that this layout can be changed after SCRIP calculation to let the model
calculations be performed at maximum speed

2. Implementation

To make the HIPPO library available, one would have to also previously install :
• the Portable Hardware Locality (hwloc) software package [6] which provides a

portable abstraction (across OS, versions, architectures, ...) of the hierarchical topology
of modern architectures, including NUMA memory nodes, sockets, shared caches, cores
and simultaneous multithreading

• the research project [7] which led to the implementation of the hsplit library for
hierarchical splitting of MPI communicators.

Both libraries, and HIPPO APIs were quickly compiled on the beaufix21 Météo-France
supercomputer, relying on Intel v16.1.150 and associated v5.1.2.150 MPI library.

Since testing is the only goal of this exercise, and HIPPO an still ongoing project, the
comprehensive transformation of all SCRIP interpolations available in OASIS was not necessary.
We focus on 1st order conservative (CONSERV) and gaussian (GAUSWGT) options, which
exhibit two different and typical scalability profiles.

On a first step, the setup of the HIPPO layout that will be used in the SCRIP routines is
performed at the very beginning of the MPI communicator definition (oasis_init_comp
routine). HIPPO API is called to simultaneously (i) select the number of MPI processes that will
be mapped and bound to perform the SCRIP calculations, (ii) define the number of OpenMP
threads that will be forked per MPI process and (iii) set the aff inity of these OpenMP threads.
Notice that at this stage, the MPI OpenMP threads can be forked to all processing units (PU) of
the node. If hyperthreading is activated on the machine (which is the case for beaufix2) ,
hyperthreaded calculations can be prescribed here. The layout definition is now internally
defined and does not depend on environment variables. However, KMP_AFFINITY must be
set to “respect,none", to let HIPPO modify these values at runtime.

On a second step, just before OpenMP parallel section (SCRIP weight and address calculations,
remap_conserv & remap_dist_gaus_wgt subroutines), we get the threads number as
defined previously via HIPPO for SCRIP calculation purpose and organise accordingly the
OpenMP parallel loop. At loop start, threads are effectively bound with the appropriate
affinity, calling the HIPPO_Layout_omp_thread_bind API.

Two toy models, derived from the example available within the OASIS3-MCT v4 we used in this
study2, are adapted to the purpose of the experiment. After the definition phase of the
interpolation (performed at initialisation in oasis_endef routine), fake calculations are
performed and exchanges periodically made between the two toys to simulate a realistic
communication pattern between both.

3. Results

We first check that the default behaviour of the SCRIP parallel profile can be reproduced
during the “weight and address” calculation phase of the coupled run, without performance
loss. On Figure 1a & 1b, we can deduce from the blue and red lines (respectively before and
after HIPPO instrumentation, 1 MPI per node, 40 threads per MPI process, alternate aff inity)
than our modifications do not badly affect SCRIP parallel performances. In the case of the

1 https://www.top500.org/system/178962
2 Directory: oasis3-mct/examples/test-interpolation

https://www.top500.org/system/178962

conservative interpolation (Fig. 1b), we can even notice a small improvement.

Figure 1: restitution time of SCRIP weight and address computation for gaussian (left) and 1st

order conservative (right) interpolation, with various MPI tasks/OpenMP threads ratio, as
calculated with and without (blue lines) OASIS3-MCT v4.0 HIPPO-instrumented library

Different ratios of MPI tasks/OpenMP threads lead to different results. The allocation of 2MPI
tasks per node downgrades the scalability of both interpolations. At the opposite, the
algorithm seems to take benefit of multi-threading (1 task MPI per node, 80 threads) but mainly
for the smaller values of node number. Aff inity of OpenMP threads (alternate, compact,
scatter) has no significant effect (values not shown).

Figure 2: Accumulated restitution time for SCRIP
(red) and NEMO-BENCH (green) computations, with
different parallel threading (for SCRIP) and MPI
decomposition (for NEMO-BENCH)

HIPPO most interesting capability gives the possibility to switch hybrid parallel profile at
runtime. To better test this functionality, we introduce larger calculations, the NEMO BENCH
configuration [8], in one of our toy models. Our test shows that it is possible to efficiently
launch hybrid parallel calculations during SCRIP calculation phase and MPI only calculation
during the NEMO BENCH part of the code. This dynamical change of parallelism type is
controlled by HIPPO: two different layouts are defined and used sequentially for SCRIP and
NEMO routines. Figure 2 shows that the fastest hybrid parallelism is obtained with 80 OpenMP
threads, on 40 physical cores, because the compute intensive SCRIP routines can take benefit of
hyper-threading. At the opposite, the NEMO-BENCH routines have better performance if only
40 MPI processes are used.

However, a closer look to NEMO internal profiling reveals that some routines (from which the
more time consuming, zdf_phy), more compute intensive, can be accelerated by hyper-
threading (zdf_phy from 19 to 17.5s), while most of the others are slew down. This suggests
that a different decomposition should be used for these two different kind of routines. In
particular, an appropriate OpenMP parallelism, only set via HIPPO with the appropriate
binding/pining for the compute intensive routines, could enhance the total NEMO performance.

The authors acknowledge the Météo-France machine administration for having facilitated the
scalability test. This work has benefited from the IS-ENES3 project, funded by the European
Union’s Horizon 2020 research and innovation programme under grant agreement No 824084

References

[1] Jones, P., 1999: Conservative remapping: First-and second-order conservative remapping,
Mon. Weather Rev., 127, 2204–2210
[2] Craig A., Valcke S., Coquart L., 2017: Development and performance of a new version of the
OASIS coupler, OASIS3-MCT_3.0, Geosci. Model Dev., 10, pp. 3297-3308, doi:10.5194/gmd-10-
3297-2017
[3] Piacentini, A., Maisonnave, E., Jonville, G., Coquart, L. and Valcke, S., 2018: A parallel SCRIP
interpolation library for OASIS, Working Note, WN/CMGC/18/34, CECI, UMR CERFACS/CNRS
No5318, France
[4] Samaké, A., Bouillon, S., Rampal, P., Ólason. E., 2017: Parallel Implementation of a
Lagrangian-based Model on an Adaptive Mesh in C++: Application to Sea-Ice. Journal of
Computational Physics, dx.doi.org/10.1016/j.jcp.2017.08.055
[5] Piacentini, A., API of the Hybrid Interactive Placement in Palm and Oasis (HIPPO) library,
https://nitrox.cerfacs.fr/pae/hippo, restricted access
[6] Broquedis, F., Clet-Ortega, J., Moreaud, S., Furmento, N., Goglin, B., Mercier, G., Thibault, S.
and Namyst. R., 2010: hwloc: a Generic Framework for Managing Hardware Aff inities in HPC
Applications. In Proceedings of the 18th Euromicro International Conference on Parallel,
Distributed and Network-Based Processing (PDP2010), Pisa, Italia, February 2010. IEEE
Computer Society Press. https://hal.inria.fr/inria-00429889
[7] Goglin, B., Jeannot, E., Mansouri, F., Mercier. G., 2018: A Hierarchical Model to Manage
Hardware Topology in MPI Applications. [Research Report] RR-9077, Inria Bordeaux Sud-
Ouest; Bordeaux INP; LaBRI - Laboratoire Bordelais de Recherche en Informatique, pp.32. hal-⟨
01538002v6⟩
[8] Maisonnave, E. and Masson, S., 2019: NEMO 4.0 performance: how to identify and reduce
unnecessary communications, Technical Report, TR/CMGC/19/19, CECI, UMR CERFACS/CNRS
No5318, France

https://cerfacs.fr/wp-content/uploads/2019/01/GLOBC-TR_Maisonnave-Nemo-2019.pdf
https://cerfacs.fr/wp-content/uploads/2019/01/GLOBC-TR_Maisonnave-Nemo-2019.pdf
https://hal.inria.fr/hal-01538002v6
https://hal.inria.fr/hal-01538002v6
https://hal.inria.fr/inria-00429889
https://nitrox.cerfacs.fr/pae/hippo
https://cerfacs.fr/wp-content/uploads/2018/03/GLOBC-TR-PIANCENTINI-cmgc_18_34.pdf
https://cerfacs.fr/wp-content/uploads/2018/03/GLOBC-TR-PIANCENTINI-cmgc_18_34.pdf

	1. Rationale
	2. Implementation
	3. Results

