
 1

 08/06/2011

OASIS4OASIS4

User – defined interpolation
with a

weight-and-address file

Developer's Guide

Jean LatourJean Latour

Sophie ValckeSophie Valcke

June 2011June 2011
CERFACS Working NoteCERFACS Working Notess WNWN--CMGCCMGC--1111--48 48

 2

 08/06/2011

Index

 Chapter Page

1. Driver and PSMILe logic overview 3

1.1 General picture 3
1.2 Constraints on the Driver 4
1.3 Constraints on the PSMILe 7
1.4 Overview of the new driver logic for the SMIOC exploration 8

1.4.1 First pass logic : prismdrv_get_udef_transients 9
1.4.2 Second pass logic : subroutine prismdrv_init_smioc_struct 11

2. New "User defined" structures 14

2.1 PSMILe Common structures 14
2.2 psmile_smioc global module 15
2.3 New structures in psmile.F90 15
2.4 Modified existing structures 17

2.4.1 Grid type 17
2.4.2 Taskout type 18
2.4.3 ch_ptr type 19

3. Driver's variables details 20

3.1 Differences between 1st and 2nd steps in the SMIOC files processing 20
3.2 Indexing of the transients within a component 20
3.3 Creation of the additional "user defined" transients 21
3.4 De-allocation of global structures 23

4. PSMILe subroutines details 23

4.1 Prism_Init details 24
4.2 Prism_enddef logic 24
4.3 Prism_put logic 25
4.4 Prism_get logic 27
4.5 Psmile_gridless_func_real (dble) 29

5. CONCLUSIONS 30

 3

 08/06/2011

1) DRIVER AND PSMILE LOGIC OVERVIEW

1.1) General picture

Usual interpolation algorithms are based on a geographical localization of the points or cells of
the target and source grids. However, some of the fields exchanged in a coupled experiment, like
the water runoff of rivers, or the water added to the oceans by the melting icebergs, do not fit
these interpolation schemes, since these events occur at some specific place or since we would
like to model them as occurring at specific places. This locality implies that the remapping
should associate some specific points of the source grid with some specific points of the target
grid with a user-defined weight. There is no true "interpolation"; instead, the computation of a
value of the target function is defined by a weighted sum of a few values of the source function,
taken from specific points of the source grid. In order to achieve this, the user has to define, in a
separate file, the links associating a specific point of the target grid, with some specific points of
the source grid and the weights corresponding to each link. This is the "user-defined weights and
addresses file. Figures 1 and 2 illustrate the concept of the user-defined remapping.

Figure 1 User-defined remapping

Figure 2: Gridless function and content of weight-and-address file

 4

 08/06/2011

For each component of OASIS4, the user defines the grids, the coupling fields (transients), …
i.e. all objects that will be involved in the coupling process, through XML input files containing
a number of elements and attributes. These informations are gathered in OASIS4 internal
structures, described by Fortran derived types. Since the number of components, or the number
of transients for example is not know in advance, all of these data are gathered in dynamic arrays
: allocatables arrays or pointers. Once the XML information is fully processed by the driver, this
information is sent to each component model. Following the receives, each component
organizes these data in their own internal structures, through several calls to PSMILe
subroutines.

The modifications introduced by the "new" (for OASIS4) interpolation method, the user-defined
interpolation with a Weight and Addresses file, are done within this general framework. They are
limited to a few subroutines in the driver, and a few subroutines in the PSMILe user
Interface. Several new data structures are also defined.

The motivations for these modifications are now described:

1.2) Constraints resulting from the Driver’s code structure.

1.2.1) Transient description in XML files, target side :

 We want to keep the user "manual" description of the interpolation in the SMIOC as

simple as possible: the user only needs to give a few elements under the interpolation
method description in a specific <origin> element of the target geographic transient
function.
For example : the <origin> element of the target component will contain :

 <origin transi_in_name="target_fnc_in1">
 <corresp_transi_out_name>source_fnc_out1</corresp_transi_out_name>
 <component_name>source</component_name>
 <middle_transformation>
 <interpolation>
 <interp3D>
 <user3D>
 <file>
 <name>weights_addresses.nc</name>
 <format>mpp_netcdf</format>
 <io_mode>iosingle</io_mode>
 </file>
 </user3D>
 </interp3D>
 </interpolation>
 </middle_transformation>
 </origin>

1.2.2) Transient description in XML files, source side :

The principle of the user-defined interpolation is to construct a new transient function
based on a new "gridless" grid (See the User's Guide for this interpolation). However
these new objects should be fully transparent to the user, they have to be created
automatically by the driver, and the PSMILe when they "detect" the specific method
"user3D" in the SMIOC, for each specific transient origin. This unique transient origin in
a "target" component is coupled to a unique transient output in a "source" component,
and the correspondence between the two is established by the driver. For this, the driver

 5

 08/06/2011

compares : 1) the origin transi_in_name of the target, to the corresp_transi_in_name of
the output transient in the source component, and 2) the corresp_transi_out_name of the
origin transient in the target component to the transi_out_name of a specific transient
output in the source component.
For example : the output description in the source component can be :

 <output transi_out_name="source_fnc_out1">
 <minimal_period>
 <nbr_hours>1</nbr_hours>
 </minimal_period>
 <exchange_date>
 <period>
 <hour>1</hour>
 </period>
 </exchange_date>
 <corresp_transi_in_name>target_fnc_in1</corresp_transi_in_name>
 <component_name>target</component_name>
 <source_transformation>
 <statistics>
 </statistics>
 <source_local_transformation>
 </source_local_transformation>
 </source_transformation>
 <debug_mode>false</debug_mode>
 </output>

1.2.3) Matching origin and output transients :

For each transient, the driver will search the details of the XML files in order to detect a
"user3D" interpolation method. For a specific transient and a specific input origin it will
generate the internal structures of a new transient ("user-defined transient"). This new
transient has only ONE input origin in which the names (transi_in_name, and
corresp_transi_out_name) are copied from those defined by the user for the geographic
transient, plus a constant suffix in order to distinguish the geographic transient from the
"user defined" transient.
During the processus of matching origins and outputs, the driver will detect in a specific
source component which output of which transient is to be coupled with this transient
origin. So for the source component detected, the driver will associate a new transient
("user defined transient"). This new transient in the source component, will have only
ONE output, again with names (transi_out_name and corresp_transi_in_name) copied
from those of the geographic transient plus the same constant suffix.

1.2.4) Total number of transients :

The number of transients in a component in NOT just known by a scan of the XML files
with the routine "get_smioc_numbers". Before this, the driver has to go through all XML
details in order to detect all "user3D" interpolations (N for example) and it has to create
an equal number of transients with one input origin, and an equal number of transients
with one output. These 2N new transients will match 2 by 2 during the "name-matching"
process, in the same way as the geographic transients created by the user.

Before any information is sent to the components by the driver, the XML analysis has to
be completed and the right number of transients calculated : those defined by the user for

 6

 08/06/2011

the geographic variables, plus the new additional transients created each time a "user3D"
method is detected. This is mandatory, in order to keep the actual PSMILe logic and
structures unchanged. For the PSMILe, when the component is NOT stand_alone (which
is the case with interpolations), all dimensioning numbers are received from the driver, so
we must have the right dimensions for all structures in order to include the "user defined"
transients.

Note that the detailed exploration of the SMIOC files (get_transi_details) is done only
once by the driver. The actual logic is maintained in the new version : XML details are
read in a loop on the components (i.e. on the XML files), and stored in a local array of
structures : sla_driver_transi(:) (array of all transients in one component). This array is
then copied in a global array : sga_smioc_transi(:) containing ALL transients of all
components, one after the other.
During the detailed exploration of the SMIOC, a logical flag with value .true. is kept in a
new global structure each time a transient interpolation method is found to be "user3D".
Otherwise the flag keeps its default value of .false. The new global structure is in the
common module : psmile_smioc (like sga_smioc_transi)

! Global identification of User-defined Interpolation in transients
 TYPE(PSMILe_comp_udef), Dimension(:), POINTER :: sga_comp_udef_idx

In the loop on components, the sub-structure pointer : sla_driver_udef(:) is allocated

! Allocate structure for user_defined Interp for each transient in component
 ALLOCATE (sga_comp_udef_idx(ib_c)%sla_driver_udef(iga_comp_nb_transi(ib_c))

This substructure itself contains the arrays and logical variables necessary to keep track
of all "user3D" interpolations decided by the user. We will see later on how these are
counted with a more precise description of the driver routine:
prismdrv_init_smioc_struct

1.2.5) Total number of grids :

For each geographic transient, a grid name is provided in the XML file. For example on
the target side (component ocean) we have the XML description :

 <grid local_name="ocn_grid">
 <indexing_dimension index="1" periodic="true"/>
 </grid>

And on the source (atmosphere) component side we have :

 <grid local_name="atm_grid">
 <indexing_dimension index="1" periodic="true"/>
 </grid>

If a user-defined interpolation is required for the geographic transients, then each side
(source and target) will automatically setup a gridless grid on which the associated
gridless function will be defined. This is completely transparent to the user : there is no
declaration in XML SMIOC files, but the driver will generate a name for these gridless
grids, and the grid internal structures will be allocated. From
prismdrv_init_smioc_struct, a call to prismdrv_get_all_grids solves this question.
For this example, the gridless grids names will be : ocn_grid_I_01 and atm_grid_O_01

 7

 08/06/2011

It should be noted that a gridless grid is needed for each input channel input or each
output channel on which a “User3D” interpolation has been defined. So for example if a
transient, requiring a User3D interpolation, is received in one component and re-send to
another one, there will be two associated user-defined transients for this component, and
two associated gridless grids. One will be associated to an Input channel, and the other
one to an Ouput channel. The names generated internally by the driver, will differ.

1.3) Constraints resulting from the PSMLe’s code structure

Most of the logic and structures of PSMILe remains unchanged. However a few more features
are now necessary in order to process the user-defined interpolations, without changing the
user’s interface.

1.3.1) No change in PSMILe User’s Interface. Provide the “Weights and Addresses “ file.

During the simulation runs, transients variables will be exchanged between the
components models. When a "user defined" interpolation has been defined for such
transients, PSMILe routines will send and receive the new "user defined" transient,
based on a new "gridless" grid, in place of the geographic transient, based on the
geographic grid. In the component's code, the PSMILe subroutines : prism_def_grid,
prism_def_partition, … prism_def_var, etc, will be called ONLY for the geographic
transient, as usual. But when a "user-defined" interpolation method is in demand, the user
has to provide an additional "Weight and Addresses" file.

1.3.2) Relevant informations are given by the driver and by the W & A file

This logic is made possible if the PSMILe routines are now able to detect when the
"user3D" method is in use for a specific transient input origin, or for a specific transient
output. This is done under the call to subroutine : Prism_enddef.

1.3.3) Definition of user-defined transient is done under the call to Prism_enddef.

The logic of the subroutine Prism_enddef is now :
Loop on all fields allocated : 1 to Number_of_Fields_allocated

1. detect the presence of a "user3D" interpolation method
a. in a specific transient input origin, or
b. in a specific transient output

The code loops on ALL inputs : Taskin%In_channel(:), if any, and on ALL
outputs : Taskout(:), if any. In other words : on nbr_in and nbr_out, such that

 nbr_in = Fields(i)%Taskin%nbr_inchannels
 nbr_out = size (Fields(i)%Taskout

These sub-structures are part of the geographic "transient" structure
"Fields(field_id)"

2. read the NetCDF file associated with a specific Interpolation. This is done in
the subroutine : psmile_set_userdef

3. define and declare the intermediate gridless exchange grid (array with one
dimension = nlinks)

4. declare the associated variable ("user defined" transient)

 8

 08/06/2011

5. For all "user defined" transients, the Prism_enddef now calls the following
subroutines :

a. prism_def_grid
b. prism_set_point_gridless
c. psmile_store_data_intern_points : This call is needed

 for the later call to psmile_merge_fields
d. prism_def_partition
e. prism_set_mask
f. prism_def_var

6. it also disables the use of the geographic transient grid for the subsequent calls
by setting the variable Grids(grid_id)%used_for_coupling to .false.

At this point, for each Field and for all Taskout or Taskin within these Fields, the
identities of the associated User-defined transient and gridless grid are known:
For the Input channels :
 Fields(i)%Taskin%In_channel(il_i)%assoc_var_id
 Fields(i)%Taskin%In_channel(il_i)%userdef_id
 Grids(Methods(Fields(i)%method_id)%grid_id)%assoc_grid_id
For the Output channels :

 Fields(i)%Taskout(il_o)%assoc_var_id,
 Fields(i)%Taskout(il_o)%userdef_id,
 Grids(Methods(Fields(i)%method_id)%grid_id)%assoc_grid_id

Note that the gridless grid generated is generally multibloc in each PE partition. It may
happen also that some of the PEs partitions are empty (zero point in such partition).

1.3.4) Prism_Put and Prism_get create a new data structure.

Under the Prism_put and the Prism_get, the "data_array" argument provided by the user
is transformed into the "user defined" data array to be really exchanged by the inner
subroutines. This process involves a new subroutine described below.

1.3.5) Bundles are possible also for user-defined transients

If the user has defined bundles on the geographic variable, these bundles are duplicated in
the "user defined" transient variable, and transferred the usual way. The final data_array
(output argument in Prism_get) contains the final geographic variable with all the
bundles, distinguished by the index in the last dimension.

1.3.6) User’s code is only concerned by the geographic grids and transients

Finally, from the user's point of view, the component's code usage of the PSMILe
routines and arguments concerns ONLY the geographic transient, and the geographic
grid. Everything else concerning the additional "user defined" transient(s) and gridless
grid(s) is done by the PSMILe routines under Prism_enddef, Prism_put and Prism_get.

1.4) Overall view of the new driver logic for the SMIOC exploration

For all dynamic arrays (allocatables or pointers) there is the need for a "two pass" logic :

- A first pass in the XML counts the number of some elements

 9

 08/06/2011

- Allocate the relevant dynamic arrays to the correct dimension for the second pass
- The second pass in XML fills the values of the elements and attributes into the dynamic

arrays.

The global elements extracted from XML files are :

! Number of grids, transients, persistents and unit sets per component

 INTEGER, DIMENSION(:), ALLOCATABLE :: iga_comp_nb_grids
 INTEGER, DIMENSION(:), ALLOCATABLE :: iga_comp_nb_transi
 INTEGER, DIMENSION(:), ALLOCATABLE :: iga_comp_nb_persis
 INTEGER, DIMENSION(:), ALLOCATABLE :: iga_comp_nb_unitsets
 INTEGER, DIMENSION(:), ALLOCATABLE :: iga_comp_nb_udef

In the following, the transients and the grids elements are considered. There is strictly NO
change for all other elements : number of persistents, number of unit sets..
For the total numbers of elements we define two distincts counters for grids and transients : one
for the “XML only” elements, and one for the total “XML + User-defined” elements.

 ig_nb_tot_unitsets = 0
 ig_nb_tot_grids = 0
 ig_nb_tot_xml_grids = 0
 ig_nb_tot_transi = 0
 ig_nb_tot_xml_transi = 0
 ig_nb_tot_persis = 0

Note the new global counter : iga_comp_nb_udef(:) .
It contains, per component, the number of new "user defined" transients to be created, and this
number is also the number of “gridless” grids to be created.

The "two pass" logic in the driver SMIOC routines can now be exposed. This is the logical
content of the routines : prismdrv_get_udef_transients and prismdrv_init_smioc_struct.

1.4.1 First pass logic : prismdrv_get_udef_transients

- First pass in XML "as before" : count "XML defined" items :
This is done in the new subroutine : prismdrv_get_udef_transients.
the functions of this subroutine are :

 DO on all components
 get the number of transients defined in XML, per component :

 CALL get_smioc_grids_transi_nb (iga_comp_id_doc_XML(ib_c), &
 iga_xml_comp_nb_grids(ib_c), &
 iga_comp_nb_transi(ib_c), &
 id_err)
o accumulate the total number of XML transients and grids for all components
 ig_nb_tot_transi = ig_nb_tot_transi + iga_comp_nb_transi(ib_c)
 ig_nb_tot_xml_grids = ig_nb_tot_xml_grids + iga_xml_comp_nb_grids(ib_c)
o ! Allocate a structure for the user_defined Interp for each transient in component
o ALLOCATE (
 sga_comp_udef_idx(ib_c)%sla_driver_udef(iga_comp_nb_transi(ib_c)))

 ENDDO on components

Allocate global structures

 10

 08/06/2011

 ALLOCATE (sga_xml_smioc_transi (ig_nb_tot_transi)

pointers are defined within the '"transient" structures, these 3 pointers need to be
allocated with the correct dimensions : (global counters iga_)

ALLOCATE (iga_comp_nb_stand_name(ig_nb_tot_transi))
ALLOCATE (iga_comp_nb_transi_in(ig_nb_tot_transi))
ALLOCATE (iga_comp_nb_transi_out(ig_nb_tot_transi))

 DO on all components
 local values for one component : ila_, and sla_
 ALLOCATE (ila_comp_nb_stand_name(iga_comp_nb_transi(ib_c)))
 ALLOCATE (ila_comp_nb_transi_in(iga_comp_nb_transi(ib_c)))
 ALLOCATE (ila_comp_nb_transi_out(iga_comp_nb_transi(ib_c)))
 ! First pass : gather info in XML files only
 ll_userdef_details = .true.
 CALL get_transi_io_numbers (iga_comp_id_doc_XML(ib_c), &
 iga_comp_nb_transi(ib_c), &
 ila_comp_nb_stand_name(:), &
 ila_comp_nb_transi_in(:), &
 ila_comp_nb_transi_out(:), &
 ib_c, &
 ll_userdef_details, &
 id_err)

 Copy the local ila_ counters into the iga_ global counters
 ENDDO on components

! 4.4. Allocate standard name, transient_out, and transient_in
! in a global transient structure. Loop on ALL transients in all components

 DO ib_ntt = 1, ig_nb_tot_transi

 ALLOCATE (sga_xml_smioc_transi(ib_ntt)%sg_transi_in%sga_in_orig &
 (iga_comp_nb_transi_in(ib_ntt)))

ALLOCATE (sga_xml_smioc_transi(ib_ntt)%sga_transi_out &
 (iga_comp_nb_transi_out(ib_ntt)))

ALLOCATE (sga_xml_smioc_transi(ib_ntt)%cga_stand_name &
 (iga_comp_nb_stand_name(ib_ntt)))

 ENDDO on all XML transients

Initialize sga_xml_smioc_transi global array of structures to PSMILE_undef
 with a call to init_transi(…)

 DO on all components : index ib_c
 ! Allocate transient in and out structures for user-defined interpolations
 DO ib_nt = 1, iga_comp_nb_transi(ib_c)
 ALLOCATE sga_comp_udef_idx sub-structures
 ENDDO

 11

 08/06/2011

 Initialise : sla_driver_transi, and sga_comp_udef_idx to PSMILE_undef
 with a call to init_transi(…) and init_comp_udef(…)

 ll_userdef_details = .true.
 ! extract detailed informations
 CALL get_transi_details (iga_comp_id_doc_XML(ib_c), &
 iga_comp_nb_transi(ib_c), &
 sla_driver_transi(:), &
 ib_c, &
 ll_userdef_details, &
 id_err)
 In sga_comp_udef_idx, the flags for "USER3D" interpolations are : .true.

 ! 5.6. Put local transient details in global structure
 sga_xml_smioc_transi (il_ntr+1:il_ntr+iga_comp_nb_transi(ib_c)) = &
 sla_driver_transi(:)

 Check coherency between transi_in and transi_out informations and
 detect the transients "out" associated with User_Defined Interpolation
 This algorithm compares cg_transi_in and out _name through 4 nested DO loops…

 ! Get the dimensioning numbers for "User Defined" transients :

by counting the flags : lga_trin_orig and lga_trout that were set in get_transi_details

 ! From now on we know : the number of "User Defined" transients to be created
 per component = iga_comp_nb_udef(:)

 ! Allocate + fill iga_trans_udef(:) for each component it keeps the indexes of the
 user defined transients in the XML SMIOC file, for each component.
 ENDDO on components

! Reset global counters to 0 and keep present value in ig_nb_tot_xml_transi
 ig_nb_tot_xml_transi = ig_nb_tot_transi
!
 ig_nb_tot_transi = 0
 iga_comp_nb_transi(:) = 0

 ig_nb_tot_grids = 0
 iga_comp_nb_grids(:) = 0

 At the end of this "first pass" we have :
 All dimensioning numbers for the XML transients and grids
 All dimensioning numbers for the "User defined" transients
 These numbers are equal to the number of grids “gridless” to be created, since there is
 one grid “gridless” associated to each “User defined” transient

ð We can add them together, and re-allocate new arrays of structures with the new global and

local dimensions

1.4.2 Second pass logic : subroutine prismdrv_init_smioc_struct

Within this subroutine, the same logic is applied again, but this time with the new
dimensions for all allocations : the flag ll_userdef _details is now set to .true.

 12

 08/06/2011

A simplified vue of this routine is given below : we present here only a single DO loop
on components, instead of the details of the do loops on components alternating with the
global ordering of the transients

DO loop on components

ll_userdef_details = .true.
CALL get_smioc_numbers (cla_file_name, il_length, &
 iga_comp_nb_unitsets(ib_c), &
 iga_comp_nb_grids(ib_c), &
 iga_comp_nb_transi(ib_c), &
 iga_comp_nb_persis(ib_c), &
 ib_c, &
 ll_userdef_details, &
 id_err)

iga_comp_nb_transi(ib_c) is now the sum of the XML transients, and the User defined
transients, and :
iga_comp_nb_grids(ib_c) is now the sum of the XML grids and the User defined
gridless grids.

These numbers are sent to the components, so the PSMILe routines can now allocate their
own structures with the right dimensions on transients.
During the "first pass", informations on the dimensioning numbers or smioc details have
NOT been sent to the components, since they were missing the values for the "user
defined" transients.

For transients, the "io_numbers" now take into account the additional channels "In" or
"Out" of the new user defined transients :

 ll_first_details = .false.
 CALL get_transi_io_numbers (cla_file_name, il_length, &
 iga_comp_nb_transi(ib_c), &
 ila_comp_nb_stand_name(:), &
 ila_comp_nb_transi_in(:), &
 ila_comp_nb_transi_out(:), &
 ib_c, &
 ll_first_details, &
 id_err)

! 5.5.1 Get details for all transients :

 We do not need to execute the get_transi_details subroutine again. Instead, the "first
pass" global array : sga_xml_smioc_transi, is used for initializing the local array :
sla_driver_transi(1:iga_xml_comp_nb_transi(ib_c)).

Then the additional "User defined" transients for this component are created in the
subroutine :

CALL prismdrv_get_all_transi (iga_comp_nb_transi(ib_c), &
 sla_driver_transi(:), &
 ib_c, &
 id_err)

 13

 08/06/2011

On the return from this subroutine, the sla_driver_transi array of transient structures is
now complete with :

1) the XML transients extracted from the SMIOC files during the first pass
and 2) the new, created, user defined transients needed for all "user3D" interpolations.

Within the loop on components, now all transient details are sent to each component
where the PSMILe structures are filled. All "XML" transients and all "User defined"
transients are then initialized in the PSMILe.

ENDDO on components

 14

 08/06/2011

2) NEW "USERDEF" STRUCTURES

Several global and local structures have been created for the support of the automatic
generation of the "user defined" transients.

2.1 PSMILe Common structures : lib/common_oa4/src/psmile_smioc.F90

!
! Structure for search of User-defined interpolations
! ==
! Allocate one per component
!
! ig_xml_udef : number of XML transients of this component with Udef Interpolation
!
! ig_tot_comp_ugl : total number of additional "gridless" transients for this component
! depends on the number of origins or outputs of the XML "Udef" transients
!
! iga_xml_trindex : dimension = ig_tot_comp_ugl, contain index of XML "Udef" transient
! for each gridless transient in component
!
! iga_trans_udef : dimension = ig_xml_udef, indexes of geographic transients "ud" in
component
!
! sla_driver_udef : array of structures : one per XML transient in component
!
 TYPE PSMILe_comp_udef

 Integer :: ig_xml_udef
 Integer :: ig_tot_comp_ugl
 Integer, pointer :: iga_xml_trindex(:)
 Integer, pointer :: iga_trans_udef(:)
 Type(PSMILe_udef_idx), pointer :: sla_driver_udef(:)

 END TYPE PSMILe_comp_udef

!===
!
! Allocate one per XML transient
!
! lg_trans_ud : true if transient needs a User-defined Interpolation
!
! ig_dim_orig : dimension of pointer lga_trin_orig, = ig_nb_in_orig
!
! ig_dim_out : dimension of pointer lga_trout, = ig_nb_transi_out
!
! lga_trin_orig : true if transient_in%origin needs a User-defined Interpolation
! Allocated to dimension ig_dim_orig = ig_nb_in_orig
!
! lga_trout : true if transient output needs a User-defined Interpolation
! Allocated to dimension : ig_dim_out = ig_nb_transi_out
!
! cg_local_name : local name of transient found in XML.
! Used for generating the associated gridless grid name

 15

 08/06/2011

TYPE PSMILe_udef_idx

 Logical :: lg_trans_ud

 Integer :: ig_dim_orig
 Integer :: ig_dim_out
 Logical, pointer :: lga_trin_orig(:)
 Logical, pointer :: lga_trout(:)
 Character(len=max_name) :: cg_local_name

 END TYPE PSMILe_udef_idx

!===

2.2 Global variables in psmile_smioc module lib/common_oa4/src/psmile_smioc.F90
 (Code after the SAVE)

! Global counter for first pass
 INTEGER, DIMENSION(:), ALLOCATABLE :: iga_xml_comp_nb_grids
 INTEGER, DIMENSION(:), ALLOCATABLE :: iga_xml_comp_nb_transi

! Global pointer for first pass (search of User-defined Interpolations)
 TYPE(transient), DIMENSION(:), POINTER :: sga_xml_smioc_transi

! Global identification of User-defined Interpolation in transients
 TYPE(PSMILe_comp_udef), Dimension(:), POINTER :: sga_comp_udef_idx
!
! Total number of grids in XML SMIOC files
 INTEGER :: ig_nb_tot_xml_grids
! Total number of transients in XML SMIOC files
 INTEGER :: ig_nb_tot_xml_transi

!==

2.3) New structures defined in lib/psmile_oa4/src/psmile.F90

!==
!
! Derived type Userdef to store info on user-defined links for interpolation
!
! var_id : global index in the Fields array of the geographic variable
!
! igl_grid_id : grid id of the gridless grid built from the user defined links
!
! status : status of this entry
!
! ig_transi_side : 0 for the source side (Tranient Out)
! 1 for the target side (Transient In)
!
! ig_nb_links : number of links defined in the weight and addresses file
!
! ig_celldim : number of dimensions of geographical cells

 16

 08/06/2011

! (can be 1, 2 or 3, and depend on side)
!
! ig_nb_ppp : number of links relevant to the partition of this PE
!
! ig_nbr_fields : number of "bundles" of geographic function (>= 1)
!
! lg_nolink : .true. for a PE having no geographic point in its partition
! (obsolete...) to match with any user-defined link
!
! iga_igl(:,:) : list of indexes of geographical grid (local to partition)
! the list of indexes stored in iga_igl concerns only one side
! either the source side (for the prism_put)
! or the target side (for the prism_get)
!
! iga_links(:) : list of links defined by the user (local to partition)
! the list stored in iga_links concern only one side :
! either the source side, or the target side
!
! trans_grless(:,:,:,:) : Local non continuous gridless function based on
! the geographic function and the links in w&a file
!
 Type Userdef

 Integer :: var_id
 Integer :: igl_grid_id
 Integer :: status
 Integer :: ig_transi_side
 Integer :: ig_nb_links
 Integer :: ig_celldim
 Integer :: ig_nb_ppp
 Integer :: ig_nbr_fields

 Integer, pointer :: iga_igl(:,:)
 Real (PSMILe_float_kind), pointer :: dga_wght(:)
!
 REAL, pointer :: real_gridless(:,:,:,:)
 DOUBLE PRECISION, pointer :: dble_gridless(:,:,:,:)

 End Type Userdef

!==
!
! Derived type PSMILe_Link to store info about each link defined by user
!
! cell_id(3) : indexes of the geographical cell in the 3 dimensions
!
! weight : weight attached to the geographical field value

 Type PSMILe_Link

 Integer :: cell_id(3)
 Real (PSMILe_float_kind) :: weight

 End Type PSMILe_Link

 17

 08/06/2011

!==

2.4) Modified existing structures

PSMILe structures are mostly left unchanged. However the association of a "geographic
transient" with a "user defined" transient, in case of an interpolation method "user3D"
introduced a few variables in the existing structures : Grids, Taskin and Taskout

2.4.1 Grid type

assoc_grid_id is the grid ID of the associated gridless grid, needed for the user defined transient

 Type Grid

 Integer :: global_grid_id
 Integer :: status
 Integer :: comp_id
 Integer :: grid_type
 Integer :: grid_shape (2, ndim_3d)
 Integer :: grid_structure
 Integer :: n_dim
 Integer (kind=int64) :: size
 Integer (kind=int64) :: global_size(ndim_3d)
 Logical :: used_for_coupling
 Logical :: pole_covered
 Integer :: smioc_index
 Character(len=max_name) :: grid_name
 Type (Corner_Block), Pointer :: corner_pointer

 Type (Enddef_mg), Pointer :: mg_infos (:)
 Integer :: nlev
 Integer :: ijk0 (ndim_3d)

 Integer :: periodic(ndim_3d)
 Logical :: cyclic(ndim_3d)
 Integer :: len_periodic (ndim_3d)

 Integer :: nbr_halo_segments
 Type (Halo_info), Pointer :: halo (:)
 !
 ! Specific for Gauss-reduced grids
 !
 Integer :: nbr_latitudes
 Integer, Pointer :: nbr_points_per_lat(:)
 Integer, Pointer :: partition(:,:)
 Integer, Pointer :: extent(:,:)
 Type (Corner_Block), Pointer :: gcorner_pointer
 Integer, Pointer :: star(:,:)
 Integer, Pointer :: face(:,:)
 Integer, Pointer :: global_beg(:)
 Integer, Pointer :: global_end(:)

 18

 08/06/2011

 Integer, Pointer :: g2l(:,:)
 Integer, Pointer :: l2g(:,:)
 Integer, Pointer :: g_irange(:,:)

 Integer, Pointer :: remote_index(:)
 Integer, Pointer :: send_list(:)
 Integer, Pointer :: recv_list(:)
 Type(integer_vector), Pointer :: get_list(:)
 Type(integer_vector), Pointer :: put_list(:)
 Type(integer_vector), Pointer :: put_loc_list(:)
 Integer :: ijk0_r (ndim_3d)
 !
 ! Userdef interpolation : associated grid_id
 !
 Integer :: assoc_grid_id

 End Type Grid

2.4.2 Taskout

assoc_var_id is the ID of the user defined transient variable associated with the actual
geographic variable.
userdef_id is the ID pointing to the "Userdefs" global array entry for the "user defined" transient
The structure Userdefs contains for example the local values of the transient variable, computed
in Prism_put, or received in Prism_get

 Type Taskout_type

 Integer :: origin_type
 Integer :: remote_transi_id
 Integer :: global_transi_id
 Integer :: remote_comp_id
!
! Userdef ids (if interpolation is "user3D")
 Integer :: assoc_var_id
 Integer :: userdef_id

 Double Precision :: start_day
 Double Precision :: end_day
 Double Precision :: start_sec
 Double Precision :: end_sec
 Integer :: nsum
 Integer :: Time_length
 Integer, Pointer :: buffer_int(:)
 Real, Pointer :: buffer_real(:)
 Double Precision, Pointer :: buffer_dble(:)
#if defined (PRISM_QUAD_TYPE)
 Real (kind=PRISM_QUAD_TYPE), Pointer :: buffer_quad(:)
#endif
 Type (PSMILe_Time_Struct) :: Judate_Lbnd
 Type (PSMILe_Time_Struct) :: Judate_Ubnd
 Type (PSMILe_Time_Struct), Pointer :: Judate_Axis(:)

 19

 08/06/2011

 Type (Interp_type) :: interp
 Type (Combi_type) :: combi

 Integer :: n_send_direct
 Integer :: n_send_coupler
 Integer :: n_send_appl

 Integer :: n_alloc_send_direct
 Integer :: n_alloc_send_coupler
 Integer :: n_alloc_send_appl

 Type (Send_field_information), Pointer :: send_direct (:)
 Type (Send_field_information), Pointer :: send_coupler (:)
 Type (Send_field_information), Pointer :: send_appl (:)

 End Type Taskout_type

2.4.3 ch_ptr type part of : Taskin% In_channel(:)

Same variables as in Taskout structure.

 Type ch_ptr

 Integer :: origin_type
 Integer :: remote_transi_id
 Integer :: global_transi_id
 Integer :: remote_comp_id

! if User defined interpolation
 Integer :: assoc_var_id
 Integer :: userdef_id
!
 Type (Interp_type) :: interp
 Type (Combi_type) :: combi

 End Type ch_ptr

 20

 08/06/2011

3) DRIVER'S VARIABLES DETAILS

3.1) differences between the first and second steps in the SMIOC files processing

In the second step the information gathered in the global array : sga_xml_smioc_transi, is just
copied into the new global array : sga_smioc transi, in order to avoid a second scan of the XML
files with the "sasa" routines. This process can be time consuming, mainly due to the fact that
with "user3D" interpolations, one must explore the XML hierachical structures up to the 10th
level. A full exploration has been done in the subroutine Prismdrv_get_udef_transients, so it can
be avoided in the second step carried by subroutine Prismdrv_init_smioc_struct.

The ordering of the transients structures in sga_xml_smioc_transi and sga_smioc_transi is
easy to understand with the follwing picture :

1st pass : Prismdrv_get_udef_transients

 il_xml_ntr il_xml_ntr + iga_xml_comp_nb_transi(ib_c)

sga_xml_smioc_transi

 comp.1 component ib_c comp. N

2nd pass : Prismdrv_init_smioc_struc

 il_ntr il_ntr + iga_comp_nb_transi(ib_c)

sga_smioc_transi XML transients "user
 defined" transients

 component ib_c

3.2) Indexing of the transients within a component

The numbering of transients is in fact the do loop index "ib_c" in get_transi_details.
The interpolation method is specific to a single output of the transient "source" or a single origin
of the transient target. Indexing of these structures is the loop index ib_o for the outputs and ib_i
for the input-origins.
The dimension of the Taskout(:) pointer is not a variable in the GridFunction type, so we called
nbr_out = size("Taskout(:)") .
For input origins, the size of the pointer In_channels(:) is the Taskin variable :
Taskin%nbr_inchannels

 21

 08/06/2011

3.3) Creation of the additional "user defined" transients for the auxiliary function

In subroutine create_all_transi we loop on the XML transients in which a "user3D" method has
been detected. For these transients, one or more new "user-defined" transient must be created :
this process is a copy of the XML "transient" structure, of index : "ib_xml" into a transient
structure whose index : "ib" varies from : il_xml_transi+1 to iga_comp_nb_transi(ib_c).
For a given component, the array of transient structures : sla_driver_transi has been allocated,
to dimension : iga_comp_nb_transi(ib_c).
The logic of the transient copy is in the subroutine create_all_transi : with an example it is easy
to understand :
Transients for the component "ib_c" for example has 12 "XML" transients (in SMIOC file)
Three of them (3, 7 and 11) rely on the interpolation method "user3D".
Transient 3 has one output, transient 7 has 2 outputs, and transient 11 has 1 input channel

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 1 il_xml_transi id_nb_transi

 ib_xml ib

The copy of XML transients structures into "user defined" transient structures is in the loop :
DO ib_xud = 1, sga_comp_udef_idx(id_comp)%ig_xml_udef

In the above example ig_xml_udef = 3

The index of the transients to be copied (3,7,11) is in : iga_trans_udef(:) array. Each index is
copied in the variable ib_xml = sga_comp_udef_idx(id_comp)%iga_trans_udef(ib_xud).

Now we must check which output, and which input channel uses an interpolation method
"user3D". This information is kept in the logical flag associated with each of these channels for
this transient :
for input channels : if this flag is true, we create a copy :
sga_comp_udef_idx(id_comp)%sla_driver_udef(ib_xml)%lga_trin_orig(il_ch)

all possible values of il_ch are scanned through the loop on the values : 1 to
il_dim_i = sga_comp_udef_idx(id_comp)%sla_driver_udef(ib_xml)%ig_dim_orig

Similarly, for the output channels, we execute the loop : il_ch = 1 to :
il_dim_o = sga_comp_udef_idx(id_comp)%sla_driver_udef(ib_xml)%ig_dim_out

and we check the flag :
sga_comp_udef_idx(id_comp)%sla_driver_udef(ib_xml)%lga_trout(il_ch)

 22

 08/06/2011

The last point is to give an index to the new "transient" (user-defined) structure within the array
sla_driver_transi(iga_comp_nb_transi(ib_c)). For this we have defined the index "ib" .
The first argument in the call to "create_all_transi" is the total number
 id_nb_transi = iga_comp_nb_transi(ib_c)
In addition to this information, the global variable : iga_comp_nb_udef(id_comp) contains the
total number of user-defined transients to be created for this component, so we compute the
upper value of the index of the XML transients already presents in the sla_driver_transi array :
 il_xml_transi = id_nb_transi - iga_comp_nb_udef(id_comp)

Note that the index of the component is ib_c in the calling routine, and id_comp in the callee.

For the new transients : ib minimum value is then il_xml_transi + 1, and the maximum value is
id_nb_transi. "ib" is then incremented by 1 each time a new transient has to be copied / created.

The copy of the transient structure is done in subroutine : "create_transi_udef.F90" in the
common routines subdirectory. During this copy, several elements are NOT copied like the
most of the "id" variables, or the information about the "user3D" interpolation, since there is no
interpolation for this new transient, only a direct transfer from source component to the target
component.

Names need a special treatment : on the input channel side, the variables :
sga_in_orig(ib_i)%cg_transi_in_name and sga_in_orig(ib_i)%cg_orig_transi
are modified with the addition of the suffix "_glC"
And on the output side, the variables :
sga_transi_out(ib_o)%cg_transi_out_name and sga_transi_out(ib_o)%cg_dest_transi
are modified in the same way
By adding to theses name a constant suffix, (the same suffix will be applied to ALL of these
"channel" names for ALL transients created, in ALL components), we do not modify the result
of the matching algorithm done subsequently by the driver in order to find the associations
between "outputs" and "origins". Theses suffixes are needed since this association must be done
between the new user-defined transients ONLY. If the names were left unchanged, we could mix
channels of the geographic (XML) transients with those of the used-defined transients.

On the other hand, we have also to modify the "cg_local_name" and the
"cg_grid_family_name"
in order to distinguish them from those of the intial (XML) transient. But this time we must
create a UNIQUE name within the global application (all components), since we are creating a
specific transient for each output or each input channel of a given transient. The suffix now
depends also on the "side" : I for input channel, O for output channel, and from the index of this
channel (on 2 digits). For example :

XML transient local name : "source_fnc", output channel 1, will have for associated user
defined transient : local name = "source_fnc_glO_01"

Similarly, XML transient local_name : "target_fnc" has for associated user defined transient :
local name = "target_fnc_glI_01"

The cg_grid_family_name is also transformed with this "variable" suffix. A special subroutine
is called for this job : put_udef_suffix.F90, in the common subdirectory. This subroutine is also
called on the PSMILe side under Prism_enddef for the association between the grid_name and
the transient name.

 23

 08/06/2011

3.4) De-allocation of the global structures

Global arrays sga_smioc_transi and sga_xml_smioc_transi must be kept in memory up to the
end of the subroutine Prismdrv_set_smioc_info, where the driver computes the total number of
Communications, total number of Interpolations, and total number of Transformations.

Both structures are linked by the = sign that has a special significance for the pointers inside
these structures : cga_stand_names, sga_transi_out and sga_in_orig.

De-allocation is made by subroutine Prismdrv_finalize_smioc_struct, called at end of
Prismdrv_set_smioc_info

 24

 08/06/2011

4) PSMILE'S VARIABLES DETAILS

4.1) Prism_init modifications

A new global array of structures is introduced with the "user defined interpolation" : the
Userdefs, at the same level as the Grids, Fields, etc…
In Prism_init the same allocation scheme is in use :

!===> Pre-allocate Userdef structures
!
 Number_of_Userdefs_allocated = 8

 Allocate (Userdefs(Number_of_Userdefs_allocated), STAT = ierror)

 Userdefs(:)%ig_transi_side = PRISM_Undefined
 Userdefs(:)%ig_nb_links = 0
 Userdefs(:)%status = PSMILe_status_free

 do i = 1, Number_of_Userdefs_allocated
 Nullify (Userdefs(i)%dga_wght)
 Nullify (Userdefs(i)%iga_igl)
 Nullify (Userdefs(i)%real_gridless)
 Nullify (Userdefs(i)%dble_gridless)
 enddo

Subsequent allocations of more structures, if needed, will be done by a call to :
psmile_get_userdef_handle. This subroutine returns a "userdef_id" = index of the structure in
the array "Userdefs", and eventually, extends this array by a copy in a new, larger array and a
de-allocation of the old array.

4.2) Prism_enddef logic

In this routine we follow exactly the same logic as in the driver routine : create_all_transi.
The driver has sent to each component all the information contained in the SMIOC files (and in
the user-defined transients created). So by searching the Field(field_id)%Taskout(:), and
Taskin%In_channels(:) arrays, we will find exactly the same number of "user3D" interpolations
in the geographic XML "gridfunctions". At this point, the user has only defined the gridfunctions
for the geographic variables in the source and target component's codes.
By exploring all input channels, and all outputs we will find the cases where a "user3D"
interpolation is in use. For these we will then build the gridless grid, and define its associated
variable. This work is done in the PSMILe subroutine : psmile_set_userdef.

The test done by Prism_enddef on the existence of a matching prism_def_var call for every
SMIOC field name will be successful for the new "user defined" variable, since its name has
been built in the "user defined" transient with the same syntax and the same additional suffix.

An important point is to associate the geographic variable (set by the user) with a geographic
grid, to the "hidden" user-defined variable and its gridless grid. Morover, only the gridless grid
should play a role in the search for intersections that follows ! This is why we have the following
sequence at the end of psmile_set_userdef (fp points to the geographic field, and gp to the
geographic grid):

! 4. Updates geographical grid and field structures with associated userdef values
!

 25

 08/06/2011

 gp%assoc_grid_id = grid_id_2
 gp%used_for_coupling = .false.
!
 if (il_side == 0) then
! Geographic transient
 fp%Taskout(chan_id)%assoc_var_id = ass_var_id_2
 fp%Taskout(chan_id)%userdef_id = userdef_id_2
 elseif (il_side == 1) then
! Geographic transient
 fp%Taskin%In_channel(chan_id)%assoc_var_id = ass_var_id_2
 fp%Taskin%In_channel(chan_id)%userdef_id = userdef_id_2
 endif

In case the gridless grid partition of a PE has no point in it (empty partition), this means that the
links defined in the weight and addresses file do not concern the geographic grid partition for
this PE. In such case, this PE must be excluded from coupling for this field. This is important for
the subsequent search of intersections. In this case we have the logic :

! Case where there is no link for this PE :
 IF (il_nb_ppp .EQ. 0) THEN
 PRINT *, " Warning : No gridless point for this PE"
 CALL PSMILe_Flushstd
 gp%used_for_coupling = .false.
 fp%used_for_coupling = .false.
 return
 ENDIF

4.3) Prism_put logic

The items 0, 1, 2, 3, and 4 have not been changed compared to previous versions.
At item 5 we introduce the changes for the "user defined" interpolations.
Since prism_put deals only with outputs, we have to count them and detect which ones have
"user3D" interpolations to do.

 fp => Fields(field_id)

! count all Output channels
 nbr_out = 0
 if (Associated(fp%Taskout)) then
 nbr_out = size (fp%Taskout)
 endif

Then we allocate a new local integer arrays (2D) in order to keep track of the actions to be
performed on all output channels :

! Allocate array ila_ch_act(nbr_out,4)
!
 Allocate (ila_ch_act(nbr_out,4), STAT=ierror)

! Loop on all output channnels
!
 do il_o = 1, nbr_out

 26

 08/06/2011

 ila_ch_act(il_o,1) = field_id ! field_id used for put
 ila_ch_act(il_o,2) = il_o ! channel output of field_id
 ila_ch_act(il_o,3) = PSMILe_false ! "flag" for this il_o channel
!
 il_udef_id = fp%Taskout(il_o)%userdef_id
 ila_ch_act(il_o,4) = il_udef_id ! associated userdef id

The userdef_id is necessary to refer to the Userdefs structure containing all necessary
informations about "user3D" interpolations. The test consists in finding, or not, an active
userdef_id ; if the value is PSMILe_undef, the channel of this field does NOT uses "user3D"
interpolation, and the values in ila_ch_act will remain unchanged.
Otherwise if have to set the new values in ila_ch_act that will switch the subsequent treatments
to the "user-defined" variable and its gridless grid.

 if (il_udef_id /= PSMILe_undef) then
! gridless function will be used for the put
 ug => Userdefs(il_udef_id)
 il_side = ug%ig_transi_side
 il_dim1 = size (fp%var_shape(:,:), dim=1)
 il_dim2 = size (fp%var_shape(:,:), dim=2)
 field_id_2 = fp%Taskout(1)%assoc_var_id
!
 ila_ch_act(il_o,1) = field_id_2 ! field_id_2 is used for put
 ila_ch_act(il_o,2) = 1 ! channel output of field_id_2
 ila_ch_act(il_o,3) = PSMILe_true ! "flag" for this il_o channerl
 ila_ch_act(il_o,4) = il_udef_id ! associated userdef id

next we check the existence of bundles and the length of the data to be transferred :

! Check length of data
!
 il_fsize = Fields(field_id_2)%size ! computed from actual_shape_pr
 il_gsppp = ug%ig_nb_ppp
 il_nbfld = ug%ig_nbr_fields ! defined for prism_def_var
! Size of a single field (ig_nbr_fields is 1 or nb_bundles)
 il_size1 = il_fsize / il_nbfld ! In case of bundle : size of 1 field

We must now allocate the space for the grid function and calculate its values (local to this
partition), before sending them. This implies the data provided by the user "data_array" and the
informations kept for each cell in the Userdefs structure (obtained from the W&A file)
This work is done by two new routines : psmile_gridless_func_real, for real data, or
psmile_gridless_func_dble for double precision data.

! build the gridless function according to data type and dimensions

 if (fp%dataType == PRISM_Real) then
 call psmile_gridless_func_real (field_id, il_udef_id, il_side, &
 data_array, ierror)
 else if (fp%dataType == PRISM_Double_Precision) then
 call psmile_gridless_func_dble (field_id, il_udef_id, il_side, &
 data_array, ierror)
 endif

 27

 08/06/2011

We are now ready to loop over the output channels : Note that il_omax is identical to nbr_out

 il_omax = sga_smioc_transi(Fields(field_id)%smioc_loc)%ig_nb_transi_out

do il_o = 1, il_omaxi
!
! keep original geographical field (only if it DOES NOT uses "user3D interpolation)
! or substitute the gridless (udef) field : the "field_id" = "field_id_2"
 field_id = ila_ch_act(il_o,1) ! field_id really used for put
 i = ila_ch_act(il_o,2) ! real channel output of field_id
 il_userdef = ila_ch_act(il_o,3) ! "flag" for this il_o channel
 il_udef_id = ila_ch_act(il_o,4) ! (optional) associated userdef id

 …..
enddo

The important point is that the field_id in this loop is referring EITHER to a geographic variable,
or to a "user defined" variable, depending on the user's choice on interpolation.

Depending on the test on il_userdef, the geographic variable will be sent, or the user-defined
variable. This syntax is necessary, since the Fortran variable name is different, depending on the
case.

At the end of Prism_put, we restore the meaning of field_id to the geographic variable :

! Restore input variable field_id as the geographical field ID

 Nullify (fp)
 field_id = field_id_1

The nice part is that below the level of "psmile_put_real", etc… nothing needs to be changed in
the PSMILe code.

All arrays allocated for the special case of “user3D” interpolations are de-allocated before
leaving Prism_Put : ug%real_gridless, ug%dble_gridless and ila_ch_act.

4.4) Prism_get logic

This is essentially the same as the Prism_put logic. The obvious change is that we are now
dealing with input channels. Items 0 to 4 are unchanged, and before item 5 we have to define
nbr_in :

 field_id_1 = field_id
 fp => Fields(field_id)

! Future loop on In_channels
 nbr_in = fp%Taskin%nbr_inchannels

Another change is that currently the PSMILe code supports only ONE input channel, so there is
no need for a loop. Instead we have :

! do il_i = 1, nbr_in
! il_udef_id = fp%Taskin%In_channel(il_i)%userdef_id

 28

 08/06/2011

! Current state of the code ... only one channel here

 il_udef_id = fp%Taskin%In_channel(1)%userdef_id
 if (il_udef_id /= PSMILe_undef) then
!
! data_array received will contain the gridless function
 ug => Userdefs(il_udef_id)
 ll_userdef = .true.
 il_side = ug%ig_transi_side
 il_dim1 = size (fp%var_shape(:,:), dim=1)
 il_dim2 = size (fp%var_shape(:,:), dim=2)
 field_id_2 = fp%Taskin%In_channel(1)%assoc_var_id

The rest of the code follows the same logic as in Prism_put, without the necessity to keep the
channel number.

Note that with the new version of the PSMILe and driver's codes, it is still possible that a
component may receive AND re-send the same transient with "userd3D" interpolations.
This will generates TWO different "user defined" transients, that will be substituted to the
geographic variables so the exchanges will take place in the same way. (still need to be tested on
a realistic case)

The occurrence of bundles in the geographic variable has been tested successfully. In this case
all bundles are concerned by the same W&A file, and the same geographic grid.

Before getting the gridless function we allocate the array that will receive it :

 if (Fields(field_id)%dataType == PRISM_Real) then
 Allocate (ug%real_gridless(1:il_gsppp,1,1,il_nbfld), STAT=ierror)
 elseif (Fields(field_id)%dataType == PRISM_Double_Precision) then
 Allocate (ug%dble_gridless(1:il_gsppp,1,1,il_nbfld), STAT=ierror)
 endif
!
! user-defined interpolation : substitute gridless function and gridless grid
! From now on : use the gridless function and the gridless grid in place of
! the geographical function and geographical grid
!
 Nullify (fp)
 field_id = field_id_2

The reception of the gridless function is then followed by a call to psmile_gridless_func_real,
or psmile_gridless_func_dble. These routines compute the value of the geographic function
according to the links defined by the user in the weights an addresses file.
For example for real values :

 if (ll_userdef) then
! 1. Get the gridless function in gridless structures
! 2. Restore the geographical field in data_array

 if (Fields(field_id)%dataType == PRISM_Real) then
 call psmile_get_real (field_id, julian_day, julian_sec, &
 julian_dayb, julian_secb, ug%real_gridless, action(1), action(2), &
 info, ierror)

 29

 08/06/2011

 call psmile_gridless_func_real (field_id_1, il_udef_id, il_side, &
 data_array, ierror)
 endif

else
 …. “normal case” where the variable “data_array” receives directly the geographical
 function.

endif

At the end of Prism_get, we restore the meaning of field_id to the geographic variable :

! Restore input variable field_id as the geographical field ID

 Nullify (fp)
 field_id = field_id_1

4.5) Psmile_gridless_func_real (or dble) logic

In this new subroutine, we compute the gridless function from the geographic function values
and the informations given in the weight and addresses file, if we are on the source side
(Prism_put), and conversely, we restore the geographic function from the gridless function
values and the links defined in the weights and addresses file if we are on the target side
(Prism_get).

Note that the geographic function is defined as data_array(*). In other words, the shape
information of data_array is lost: we have to deal with a one-dimensional set of numbers.
The dimensions are recovered from the var_shape array which is a subarray in the Field
datatype.

 dim1 = fp%var_shape(2,1) - fp%var_shape(1,1) + 1
 dim2 = fp%var_shape(2,2) - fp%var_shape(1,2) + 1
 if (ndim == 3) then
 dim3 = fp%var_shape(2,3) - fp%var_shape(1,3) + 1

The the logic of source and target sides are similar : we use indirect addressing contained in the
user-defined “ug” structures in order to compute the value of the gridless function (on Prism_put
side), or the value of the geographical function (on Prism_get side).

 30

 08/06/2011

5) CONCLUSIONS

The OASIS4 coupler has been adapted so to be able to remap a coupling field provided on a
source model geographic grid to a target model geographic grid according to a set of weights and
addresses predefined by the user in an external file. This functionality has been successfully
tested with a toy coupled model “user3d-auto” which sources are available at
https://oasistrac.cerfacs.fr/browser/trunk/prism/dev_ex/user3d-auto .
This “user-defined” remapping uses the “gridless” remapping already implemented in OASIS4,
which involves a simple redistribution of source data to the target model. All steps are totally
transparent for the user who simply has to provide the weight-and-address file and to specify a
“user3D” interpolation in the SMIOC configuration files.

