OASIS and PALM, the CERFACS couplers

Sophie Valcke, Thierry Morel

June 13th, 2006

Technical Report TR/CMGC/06/38

1 Introduction

Coupling numerical models, i.e. implementing synchronized exchanges of
information between models, is a central issue in many research fields such
as climate modelling, data assimilation, or computational fluid dynamics.
Since about 15 years, CERFACS specializes in developing coupling software
tools, also called “couplers”.

In 1991, CERFACS was commissioned to develop a software interface to
couple existing numerical General Circulation Models of the ocean (OGCMs)
and of the atmosphere (AGCMs). Two years later, a first version of the
OASIS coupler was distributed to the community. Today, both the widely
used mono process OASIS3 coupler [1] and the new fully parallel OASIS4
coupler [2] are available.

Concurrently, the development of the PALM coupler, originally designed
for oceanographic data assimilation and therefore addressing parallel dy-
namic coupling, started in 1997. Two implementations of PALM are cur-
rently available, PALM Research and PALM MP [3] respectively based on
Message Passing Interface MPI1 [4] and MPI2 [5].

This document gives an overview of the OASIS and PALM couplers,
describing their analogies and differences, and concludes with a discussion
on the possible interactions in their future development.

2 OASIS3: a static mono-process coupler

OASIS3, released in the framework of the PRISM project [6], is the direct
evolution of the OASIS coupler developed since 1991 at CERFACS. It is
a portable set of Fortran 77, Fortran 90 and C routines. At run time,



OASISS3 acts as a separate interpolation process and as a parallel model
interface library, the OASIS3 PSMILe, that needs to be linked to and
used by the component models. Modularity, flexibility, and portability form
OASIS3 key design concepts.

Coupling configuration

At run time, the OASIS3 main process first reads the coupled run con-
figuration written by the user before the run in the namcouple text
file following a specific format, and distributes it to the different compo-
nent model PSMILes. The namcouple contains all coupling options for a
particular coupled run, e.g. the duration of the run, the component models,
and, for each exchange, a symbolic description of the source and target (a
component for coupling exchanges, or a file for I/O actions), the exchange
period, regridding and other transformations. During the run, OASIS3 main
process and the component model PSMILes automatically perform appro-
priate exchanges based on the configuration information contained in the
namcouple.

Process management

In a coupled run using OASIS3, the component models remain separate
executables. If the user has chosen the MPI2 approach, the OASIS3 main
process launches the different component models using the MPT Comm Spawn
functionality [5]. If only MPI1 [4] is available, the OASIS3 main process and
the component models must be all started at once in the job script’. In both
cases, all component models are necessarily integrated from the beginning to
the end of the run, and each coupling field is exchanged at a fixed frequency
defined in the namcouple for the whole run; in that sense, OASIS3 supports
static coupling only.

Coupling field transformation and regridding

For each coupling exchange, the OASIS3 main interpolation process re-
ceives the coupling field from the source model, performs the transforma-
tions and 2D regridding needed to express the source field on the grid of
the target model, and sends the transformed field to the target model. Dif-

!The advantage of the MPI2 approach is that each component keeps its own internal
communication context unchanged as in the standalone mode, whereas in the MPI1 ap-
proach, OASIS3 needs to recreate a component model communicator that must be used
by the component model for its own internal parallelisation.



ferent 2D regridding algorithms (nearest-neighbour, gaussian-weighted, bi-
linear, bicubic, conservative, etc.) in the Earth spherical coordinate system
are available for different types of grids (regular in longitude and latitude,
stretched, rotated, gaussian reduced, unstructured). OASIS3 can also be
used in the interpolator-only mode to interpolate fields contained in files
without running any model.

Communication: the OASIS3 PSMILe software layer

To communicate via the OASIS3 main interpolation process or to per-
form I/O actions, a component model needs to call few specific PSMILe
routines for its initialisation, grid and partition definition, field declaration,
field Get and Put actions (to receive or send a field by respectively calling a
prism_get or a prism_put routine), and termination. Below the prism_get and
prism_put, the PSMILe library automatically performs coupling exchanges
(i.e. between two component models) using MPI (Message Passing Interface
[4] [5]) and I/O actions from/to disk files using the GFDL mpp .o library
[7], following the user externally defined configuration in the namcouple (see
above).

PSMILe supports parallel communication in the sense that each process
of a parallel model can send its local part of the field. For coupling ex-
changes, the different parts of the field are sent either directly to the other
parallel model (if there is no need of redistribution or interpolation) or to
the OASIS3 main interpolation process, which gathers the whole coupling
field, transforms or regrids it, and redistributes it to the target component
model processes.

As for all CERFACS couplers, the communication follows the end-point
principle, i.e. there is no reference in the component model code to the
origin of a Get action or to the destination of a Put action; the source and
target component models (coupling exchange) or the input or output file
(I/0O) are set externally by the user. This ensures an easy transition from
the coupled mode (Get or Put action corresponding to a coupling exchange)
to the forced mode (Get or Put action corresponding to 1/O from/to a
file), totally transparent for the component model itself. Furthermore, the
Get/Put routines can be called at each time step in the component model
code, but the receiving and sending actions will effectively be performed
only at appropriate times from/to the appropriate source/target following
the configuration externally defined by the user (in the namcouple file).



The OASIS3 community

The OASIS community has steadily grown since its first release about
15 years ago. The OASIS3 coupler is currently used by about 15 modelling
groups in Europe, Australia, Asia and North America, on many different
platforms such as the Fujitsu VPP5000, NEC SX5, SGI Octane and 03000,
IBM Powerd, COMPAQ Alpha cluster and Linux PC cluster.

Full user support including bug fixes and release of new versions is cur-
rently provided for OASIS3, even if most of the development efforts are now
devoted to OASIS4.

3 OASIS4: a static fully parallel coupler

As the climate modelling community is progressively targeting higher re-
solution climate simulations on massively parallel platforms with coupling
exchanges involving a higher number of (possibly 3D) coupling fields at
higher coupling frequencies, a completely new fully parallel coupler OASIS4
has also been developed within PRISM. OASIS4 is a portable set of Fortran
90 and C routines. At run-time, OASIS4 acts as a separate parallel exe-
cutable, the OASIS4 Driver-Transformer, and as a fully parallel model
interface library, the OASIS4 PSMILe. The concepts of parallelism and
efficiency drove OASIS4 developments, keeping at the same time in its design
the concepts of portability and flexibility that made the success of OASIS3.

Coupling configuration

Each component model to be coupled via OASIS4 should be released
with an XML? file describing all its potential input and output fields, i.e.
all the fields that can be received or sent by the component through PSMILe
Get and Put actions in the code. Based on those description files, the user
produces, either manually or via a Graphical User Interface, the XML con-
figuration files. As for OASIS3, the OASIS4 Driver extracts the configu-
ration information at the beginning of the run and sends it to the different
model PSMILes, which then perform appropriate coupling or 1/O actions
automatically during the run. OASIS4 is also highly flexible in the sense
that any duration of run, any number of component models, any number of
coupling and I/0 fields and particular coupling or I/O parameters for each
field can be specified.

2XML (eXtensible Markup Language) is a simple and flexible standard text format [8].



Process management

The process management in OASIS3 and OASIS4 are quite similar: the
component models remain separate executables and the MPI1 and MPI2
approaches are available (see OASIS3 paragraph on the subject). The pro-
cess management of OASIS4 is however slightly more complex as OASIS4
Driver can spawn the different component models on different machines.

Although this functionality is currently not fully tested and optimised,
OASIS4 also allows the component models to redefine their grid during
the run. But besides this dynamic grid aspect, OASIS4, as OASIS3, also
manages static coupling only.

Coupling field transformation and regridding

During the run, the OASIS4 parallel Transformer manages the transfor-
mation and regridding of 2D or 3D coupling fields. The Transformer
performs only the weight calculation and the regridding per se; the neigh-
bourhood search, i.e. the determination for each target point of the source
points that contribute to the calculation of its regridded value, is performed
in parallel in the source PSMILe.

During the simulation time stepping, the OASIS4 parallel Transformer
can be assimilated to an automate that reacts to what is demanded by the
different component model PSMILes, i.e. to receive data for transforma-
tion (source component) or to send transformed data (target component).
The OASIS4 Transformer therefore acts as a parallel buffer into which the
transformations take place. Currently, only 2D and 3D nearest-neighbour,
2D and 3D linear, and bicubic regridding methods are implemented, but
plans are to implement also 3D cubic grid interpolation, and 2D and 3D
conservative remapping.

Communication: the OASIS4 PSMILe software layer

To be coupled via OASIS4, the component models have to, as with OA-
SIS3, include specific calls to the OASIS4 PSMILe software layer. The OA-
SIS4 PSMILe Application Programming Interface (API) was kept as close
as possible to OASIS3 PSMILe API; this should ensure a smooth and pro-
gressive transition between OASIS3 and OASIS4.

The OASIS4 PSMILe supports fully parallel MPI-based commu-
nication, either directly between the models (including automatic repar-
titioning if needed) or via the parallel Transformer, and file I/O using
the GFDL mpp._io library [7]. The detailed communication pattern



among the source and target component model processes is established by
the PSMILe, using the results of the regridding or repartitioning neighbour-
hood search. This search is based on the source and target identified for
each coupling exchange by the user in the XML configuration files and on
the local domain covered by each component process. The search uses an
efficient multigrid algorithm and is done in parallel in the source component
PSMILe, which ensures that only the useful part of the coupling field is
extracted and transferred.

Besides these new parallel aspects, the OASIS4 PSMILe follows the same
end-point communication and user-defined external configuration
principles than the OASIS3 PSMILe.

The OASIS4 users

OASIS4 portability and scalability was demonstrated with different “toy”
models during the EU FP5 PRISM project [6]. OASIS4 was also used to
realize a coupling between the MOM4 ocean model and a pseudo atmo-
sphere model at Geophysical Fluid Dynamic Laboratory (GFDL) in Prince-
ton (USA), and with pseudo models to interpolate data onto high resolution
grids at IFM-GEOMAR in Kiel, Germany.

Currently, work is going on with OASIS4 at:

e the Swedish Meteorological and Hydrological Institute (SMHI) in Swe-
den for coupling regional ocean and atmosphere models;

e the European Centre for Medium-Range Weather Forecast (ECMWEF),
KNMI in the Netherlands, and Météo-France in France in the frame-
work of the EU GEMS project, for 3D coupling between atmosphere
and atmospheric chemistry models;

e at the UK MetOffice for global ocean-atmosphere coupling.

After the current beta-testing phase, the first official OASIS4 version
should be publicly available beginning of 2007.

4 PALM: a dynamic parallel coupler

In contrast with OASIS3 and OASIS4 that support static coupling of pa-
rallel codes, PALM is a coupler designed to combine dynamically different
components into a high performance application [3]. PALM was originally
developed for operational oceanographic data assimilation in the framework



of the French MERCATOR project [9]. As OASIS3 and OASIS4, PALM
is a portable set of Fortran 90 and C routines. PALM Driver supports
the dynamic launching of the coupled components while its coupling
library ensures the parallel data exchanges including repartitioning
between the components. PALM also provides pre-defined algebra units.

The concept of dynamic coupling

The concept of dynamic coupling came from the observation that differ-
ent data assimilation algorithms can be obtained with different execution
sequences of the same basic units and operators. In PALM, a dynamic cou-
pling algorithm is composed of basic pieces of codes, the units, assembled in
different execution sequences, the branches, which can include complex con-
trol structures like loops, “if” constructs and “select” switches; the units
can therefore be started or stopped dynamically during the run.

Coupling configuration

The user defines and provides the elementary units, thereby fixing the
granularity of the coupling. Each unit is a piece of code that must be in-
strumented by the user with some PALM primitives and specific comments.
Each unit can consume and/or produce data, which are called objects, via
the implementation of the PALM Get and Put primitives. All the objects
that a unit can request and/or provide must be described in the unit code by
comment lines following a pre-defined syntax, the identity cards, which con-
tain the object metadata, i.e. a description of its space (its numerical type
and shape) and its distributor (the way the object is distributed amongst the
different processes). As with OASIS3 and OASIS4, modularity is ensured
by the end-point communication principle, i.e. there is no reference to
the origin of the input or to the destination of the output in the unit code.

Through a powerful graphical user interface, PrePALM, the user
chooses the elementary units to be coupled, which appear as individual boxes
on PrePALM screen, and defines their execution sequences, the branches.
PrePALM analyses the identity cards in the different unit codes and clearly
identifies the potential data input and output as “plugs” on the boxes. To
establish an exchange of information between the units, the user links the
output plug of one unit to the input plug of another unit; a pop-up ap-
pears on the link which allows the user to specify the different exchange
parameters, such as the times of exchange.

PrePALM also provides supervision tools such as a performance anal-
yser and a runtime monitoring.



Process Management

At run time, the PALM Driver ensures the execution and synchroni-
sation of the different units, compiled by the user, following the sequence
of actions defined in PrePALM. The MPI2 standard, providing the abil-
ity to spawn tasks dynamically, was a natural choice for PALM _MP: the
Driver uses the MPI2 MPI_Comm_spawn functionality to launch, when
needed, the different units as separate executables ensuring thereby the
total integrity of each unit.

At the time of initial development, the MPI2 standard was however not
available on all targeted platforms; it was therefore decided to develop a first
prototype of PALM, Palm_Research, using MPI1. With Palm_Research,
all units must be linked with PALM into one single executable, within which
the Driver launches the different units by starting corresponding
subroutines on a certain number of idle processes.

Parallel communication

In the unit code, the action of consuming data or providing data is im-
plemented by calling respectively the palm_get or palm_put primitive (Get or
Put action). At run-time, a communication takes places if the source com-
ponent issues a Put, if the target component issues a Get, if an exchange
has been defined between the corresponding output and input “plugs” (by
the user with PrePALM), and if both Put and Get are issued with corre-
sponding time stamps that fit one time exchange specified by the user with
PrePALM. The correspondence is established by the Palm Driver that acts
as a broker in the communication space. The units can be parallel,
in which case the PALM coupling library takes care entirely of the data
redistribution (repartitioning) during the communication.

For sake of performance, PALM minimizes the number of MPI messages
and the memory usage. If a Get is issued before the corresponding Put, the
corresponding object is immediately and directly sent from the source unit
to the target unit when the Put is performed. If a Put is issued before the
corresponding Get, the object is temporarily stored in a volatile memory
space, called the mailbuff, so that the Put never blocks.

With PALM_MP, the user can also define, through the graphical in-
terface PrePALM, that some units be assembled within one block, i.e. one
executable. In that case, the different units within the block are launched by
calling the appropriate subroutines and, if possible, the objects exchanged
between the units are transferred by memory copies using a local process



mailbuff, and not by message passing.

PALM also offers the possibility of using explicitly a permanent stor-
age space called a buffer. The user can explicitly create a communication
between a unit and the buffer to store an object and recover it when needed.
The buffer is particularly useful for linear combination of different fields and
for time interpolation.

The algebra units

The user can include pre-defined algebra units in its coupling algo-
rithm. These mono or multi process units, which are made available as a
toolbox via the PrePALM graphical interface, include basic operations for
matrix and vector fields, 2D linear interpolation, linear combination, linear
system solvers, eigenvector and eigenvalue solvers and minimizers. This al-
gebra toolbox is provided with the PALM software and can easily integrate
developments of general interest done by the users. For example, the 2D
geographical interpolations included in the algebra toolbox were extracted
from the OASIS3 software and interfaced as generic algebra units.

The PALM users

PALM is now a mature software with different communities of users.
As originally planned, PALM is used for data assimilation in operational
oceanography in the MERCATOR project [9]. PALM was also chosen as a
common software development platform for data assimilation by the French
community of atmospheric chemistry modelling, for example in the ADO-
MOCA project and in the former EU project ASSET. PALM is also used
for data assimilation in hydrology at the Centre National de la Recherche
Meétéorologique (CNRM) and also at the Laboratoire d’étude des Transferts
en Hydrologie et Environnement (LTHE) in Grenoble, for data assimilation
in neutronics at Electricité de France (EDF), and for assimilation of remote
sensing data in agricutural modelling.

PALM is also currently used for different applications requiring dy-
namic coupling, such as in the CFD team at CERFACS for shape op-
timisation. Given the number of recent contacts with different scientific
communities in France all looking for a flexible tool to handle dynamic
coupling, for example in the framework of the SEVE project at the Cen-
tre d’Etudes Spatiales de la BIOsphére (CESBIO), but also at: SNECMA,
the Institut Universitaire des Systémes Thermiques Industriels (IUSTI),
the Institut de Mécanique des Fluides de Toulouse (IMFT), the Institut
d’Informatique et Mathématiques Appliquées de Grenoble (IMAG), the Of-



fice National d’Etudes et de Recherches Aérospatiales (ONERA), the PALM
user community should increase rapidly in the coming years.

5 Discussion

As detailed above, OASIS is a static coupler which mono-process version,
OASIS3, should be replaced within the next few years by the new fully
parallel OASIS4. PALM is a dynamic and parallel coupler; the current
PALM_MP version is based on MPI2 for dynamic launching of the units
and to manage the communications between those units.

When the development of the OASIS4 coupler started during the PRISM
project, it was first considered to use PALM_MP and implement parallel
interpolations in PALM. This technical choice was finally not retained for
the following reasons:

e MPI2 was at the time not fully implemented on all platforms, espe-
cially on the IBM (and it is still not clear if it will be one day)?;

e the climate modelling community, main target of the PRISM project,
did not express the need of dynamic coupling and was therefore not
ready to meet MPI2 constraints;

e PALM was not open-source, condition considered mandatory in PRISM.

PALM and OASIS have therefore been developed separately, and it is
not recommended to use the two couplers together in the same coupled
application. Our expertise in CERFACS allows us to recommend one coupler
or the other to the users depending on their need?.

3Tt must be clear that even if MPI2 presents some restrictions regarding its implemen-
tation, MPI2 was and is still today the only technical choice possible to answer all PALM
requirements, i.e. 1- performances, 2- dynamic launching of units, 3- integrity of those
units, and 4- optimal use of available CPU resources. It is true however that for simpler
coupled configurations for which the dynamic launching of the units is not mandatory, we
could have included in the PALM design also the possibility to manage communications
based on MPI1.

4For current users that would like to merge existing OASIS and PALM applications,
we are however currently evaluating the possibility to use both couplers at the same time
in one application (for example to replace the ocean component of an existing ocean-
atmosphere model coupled by OASIS with an existing oceanic data assimilation chain
based on PALM).

10



On the longer term, when a community will express the need of parallel
interpolation in a dynamic coupling, we will have to consider including in
PALM the OASIS4 parallel interpolations techniques. But as this would
interfere deeply with the way communications are handled, it will probably
be more appropriate instead to parallelize the PALM current mono-process
interpolation algebra units. Both cases would represent important efforts of
development and would require a specific funding.

Even in that case, we will probably maintain the OASIS4 coupler sep-
arately for users not asking for dynamic coupling and therefore not ready
to meet MPI2 constraints, unless we judge more efficient at that time to
include in PALM also the possibility to manage communications based on
MPI1 only, as described above.

References

[1] Valcke, S., A. Caubel, R. Vogelsang, and D. Declat, 2004: OASIS3 User
Guide (oasis3_prism_2-4). PRISM Report Series, No 2, 5th Ed., 64 pp.
(http://prism.enes.org/Publications/Reports/Report02.pdf)

[2] Valcke, S., R. Redler, R. Vogelsang, D. Declat, H. Ritzdorf, and T.
Schoenemeyer, 2004: OASIS4 User Guide. PRISM Report Series No 3,
72 pp. (http://prism.enes.org/Publications/Reports/Report03.pdf)

[3] Buis, S., A. Piacentini, D. Déclat, 2005: PALM: A Computational
framework for assembling high performance computing applications.
Concurrency Computat.: Pract. Exper., 18(2), 247-262.

[4] Snir, M., S. Otto, S. Huss-Lederman, D. Walker and J. Dongarra, 1998:
MPI - The Complete Reference, Vol. 1 The MPI Core, MIT Press.

[5] Gropp, W., S. Huss-Lederman, A. Lumsdaine, E. Lusk, B. Nitzberg,
W. Saphir, and M. Snir, 1998: MPI — The Complete Reference, Vol. 2
The MPI Extensions, MIT Press.

[6] http://prism.enes.org/
[7] http://www.gfdl.noaa.gov/~ vb/mpp_io.html
[8] http://www.w3.org/XML/

[9] http://www.mercator-ocean.fr/

11



