
PRISM
A Software Infrastructure Project for Climate Research in Europe

OASIS4 User Guide
(OASIS4_0_2)

Edited by:
S. Valcke, CERFACS

R. Redler, NEC-CCRLE

PRISM–Support Initiative
Technical Report No 4

CERFACS TR/CMGC/06/74
August 25, 2006

Copyright Notice
c© Copyright 2006 by CERFACS and NEC-CCRLE
All rights reserved.
No parts of this document should be either reproduced or commercially used without prior
agreement by CERFACS and NEC-CCRLE representatives.

How to get assistance?
Assistance can be obtained by sending an electronic mail to oasis4_help(at)lists.enes.org and as
listed in Contact below.
PRISM documentations can be downloaded from the WWW PRISM web site under the URL:
<http://prism.enes.org>

Contacts

Name Phone Affiliation

Sophie Valcke +33-5-61-19-30-76 CERFACS

René Redler +49-2241-92-52-40 NEC-CCRLE

Contents

1 Introduction 1

2 OASIS4 sources 3
2.1 Copyright Notice . 3
2.2 Reference . 3
2.3 How to obtain OASIS4 sources . 3
2.4 OASIS4 directory structure . 3

2.4.1 OASIS4 sources . 3
2.4.2 Other OASIS4 directories . 4
2.4.3 The toy coupled model TOYOA4 directory structure 5

3 OASIS4 Driver/Transformer 7
3.1 The Driver part . 7
3.2 The Transformer part . 8

4 OASIS4 Model Interface library, PSMILe 9
4.1 Initialisation phase . 10

4.1.1 prisminit . 10
4.1.2 prisminit comp . 10
4.1.3 prismget localcomn . 11
4.1.4 prisminitialized . 11

4.2 Retrieval of SCC XML information . 12
4.2.1 prismget nb ranklists . 12
4.2.2 prismget ranklists . 12

4.3 Grids and related quantities definition . 13
4.3.1 prismdef grid . 14
4.3.2 prismsetcorners . 16
4.3.3 prismsetmask . 17
4.3.4 prismdef partition . 17
4.3.5 prismreducedgridmap . 18
4.3.6 prismsetpoints . 20
4.3.7 prismsetpointsgridless . 21
4.3.8 prismsetvector . 21

4.4 Declaration of Coupling/IO fields . 22
4.4.1 prismdef var . 22

4.5 Neighborhood search and determination of communication patterns 23
4.5.1 prismenddef . 23

4.6 Exchange of coupling and I/O fields . 24
4.6.1 prismput . 25
4.6.2 prismget . 26
4.6.3 prismput inquire . 27

i

ii CONTENTS

4.6.4 prismput restart . 27
4.7 Termination Phase . 29

4.7.1 prismterminate . 29
4.7.2 prismterminated . 29
4.7.3 prismabort . 29

4.8 Query and Info Routines . 31
4.8.1 prismget calendartype . 31
4.8.2 prismcalc newdate . 31
4.8.3 prismerror . 31
4.8.4 prismversion . 32
4.8.5 prismget real kind type . 32
4.8.6 prismremovemask . 32

5 OASIS4 description and configuration XML files 33
5.1 Introduction to XML concepts . 33
5.2 The Application Description (AD) . 34
5.3 The Potential Model Input and Output Description (PMIOD) 35

5.3.1 Component model general characteristics . 35
5.3.2 Grid families and grids . 36
5.3.3 Coupling/IO fields (transient variables) . 37

5.4 The Specific Coupling Configuration (SCC) . 38
5.5 The Specific Model Input and Output Configuration (SMIOC) 39

5.5.1 Component model general characteristics . 40
5.5.2 Grid families and grids . 40
5.5.3 Coupling/IO fields (transient variables) . 40
5.5.4 The ‘output’ element . 41
5.5.5 The ‘input’ element . 42
5.5.6 The element ‘interpolation’ . 43
5.5.7 The ‘file’ element . 45

6 Compiling and running OASIS4 and TOYOA4 47
6.1 Introduction . 47
6.2 Compiling OASIS4 and its associated PSMIle library . 47

6.2.1 Compilation with TopMakefileOasis4 . 48
6.2.2 Compilation using the PRISM Standard Compiling Environment (SCE) 48
6.2.3 Some details on the compilation . 49
6.2.4 Remarks and known problems . 49

6.3 Running TOYOA4 . 50

A Scalability with OASIS4 55

Chapter 1

Introduction

A new fully parallel coupler for Earth System Models (ESMs), OASIS4, has been developed within the
European PRISM project. Chapter 2 provides a more detailed description of OASIS4 sources available
from CERFACS CVS server.

An ESM coupled by OASIS4 consist of different applications (or executables), which executions are
controlled by OASIS4. Each ESM application may host only one or more than one climate component
models (e.g. model of the ocean, sea-ice, atmosphere, etc.). To interact with the rest of the ESM at run-
time, the component models have to include specific calls to the OASIS4 PRISM System Model Interface
Library (PSMILe). Each application and component model must be provided with XML files (10) that
describe its coupling interface established throughPSMILe calls. The configuration of one particular
coupled ESM simulation, i.e. the coupling and I/O exchanges that will be performed at run-time between
the components or between the components and disk files, is done by the user also through XML files.

During the run, OASIS4 Driver/Transformer’s role is to extract the configuration information defined by
the user in the XML files, to organize the process management of the coupled simulation, and to perform
the regridding needed to express, on the grid of the target models, the coupling fields provided by the
source models on their grid. The OASIS4 Driver/Transformer is described in chapter 3.

The PSMILe , linked to the component models, includes a data exchange library which performs the
MPI-based (Message Passing Interface) (9) exchanges of coupling data, either directly or via additional
Transformer processes, and the GFDL mppio library (2), which reads/writes the I/O data from/to files
following the NetCDF format (8). ThePSMILe and its Application Programming Interface (API) are
described in chapter 4.

The structure and content of the descriptive and configuring XML files are then detailed in chapter 5. In
chapter 6, instructions on how to compile and run the example toy coupled model TOYOA4 using OASIS4
are given; a toy model is an empty model in the sense that it contains no physics or dynamics; it reproduces,
however, a realistic coupling in terms of number of component models, number, size and interpolation
of the coupling or I/O fields, coupling or I/O frequencies, etc. Results of the OASIS4 scalability test
performed in 2004, at the end of the EU PRISM project funded by the European Community are finally
given in appendix A, even if they were not performed with the current OASIS4 version.

During the last year, OASIS4 started to be used into real applications by the GEMS community (ECMWF,
Mét́eo-France, and KNMI) for 3D coupling between atmospheric dynamic and atmospheric chemistry
models, by SMHI for ocean-atmosphere regional coupling, and by the UK MetOffice for global ocean-
atmosphere coupling.

Other MPI-based parallel coupler performing field transformation exist, such as the ‘Mesh based parallel
Code Coupling (MpCCI)’ (1) or the ‘CCSM Coupler 6’ (3). The originality of OASIS4 relies in its great
flexibility (as the coupling and I/O configuration is externally defined by the user in XML files) in its
parallel neighborhood search based on the geographical description of the process local domains, and in
its common treatment of coupling and I/O exchanges, both performed by thePSMILe library.

1

2 CHAPTER 1. INTRODUCTION

Chapter 2

OASIS4 sources

2.1 Copyright Notice

This software and ancillary information called OASIS4 is free software. The public may copy, distribute,
use, prepare derivative works and publicly display OASIS4 under the terms of the Lesser GNU General
Public License (LGPL) as published by the Free Software Foundation, provided that this notice and any
statement of authorship are reproduced on all copies. If OASIS4 is modified to produce derivative works,
such modified software should be clearly marked, so as not to confuse it with the current OASIS4 version.

The developers of the OASIS4 software attempt to build a parallel, modular, and user-friendly coupler
accessible to the climate modelling community. Although we use the tool ourselves and have made every
effort to ensure its accuracy, we can not make any guarantees. The software is provided for free; in return,
the user assume full responsibility for use of the software. The OASIS4 software comes without any
warranties (implied or expressed) and is not guaranteed to work for you or on your computer. CERFACS,
NEC-CCRLE, SGI Germany, NEC HPCE, and CNRS and the various individuals involved in development
and maintenance of the OASIS4 software are not responsible for any damage that may result from correct
or incorrect use of this software.

2.2 Reference

If you feel that your research has benefited from the use of the OASIS4 software, we will greatly appreciate
your reference to the following report:

Valcke, S., R. Redler, 2006: OASIS4 User Guide (OASIS40 2). PRISM Report No 3, 2nd Ed., 60 pp.

2.3 How to obtain OASIS4 sources

OASIS4 sources, Makefiles, and toy example can be retrieved from the CERFACS CVS serveralter or
from CERFACS anonymous ftp. The functionality described in this report correspond to the sources
tagged “OASIS40 2”. For more detail on how to obtain the sources, please contact us.

2.4 OASIS4 directory structure

2.4.1 OASIS4 sources

OASIS4 sources were divided into three directories underprism/src/lib/ and one directory
prism/src/mod/oasis4/ . In this new structure, only a relatively small librarycommonoa4 is used
by both the OASIS4 Driver/Transformer executable, which at run time performs the interpolations, and

3

4 CHAPTER 2. OASIS4 SOURCES

psmile_oa4 mpp_io common_oa4

lib

src srcsrc include

libmpp_io.a libcommon_oa4.a liboasis4.MPI[12].xlibuser_model.a

OASIS4 Driver/Transformer
(oasis4.MPI[1/2].x)

oasis4

src

prism

src

mod

include

user_model

src include

user_model.x

Libraries after compilation :

libpsmile_oa4.MPI[12].a

Executables :

Source code structure:

OASIS4 PSMILe
model interface

Figure 2.1: New source directory structure

by the OASIS4 PSMILe model interface, which needs to be linked to the component models for I/O and
coupling exchanges. The different directories are:

• prism/src/lib/common oa4/ : this directory contains sources that are used both by the
Driver/Transformer and the PSMILe model interface. After compilation, these sources becomes
the libcommonoa4.alibrary.

• prism/src/lib/mpp io/ : this directory contains the sources of the GFDL I/O library (2).
After compilation, these sources form the librarylibmpp io.a. Compiling and linking of this library
to a component model is not mandatory if the PSMIle I/O functionality is not used (see compilation
details in section 6).

• prism/src/lib/psmile oa4/ : this directory contains the sources that form the main part of
PSMILe model interface and become, after compilation the librarylibpsmileoa4.a.

• prism/src/mod/oasis4/ : this directory contains the main part of OASIS4 Driver/Transformer
sources. Linked with the librarylibcommonoa4.a, these sources form, after compilation, the OA-
SIS4 Driver/Transformer executable namedoasis4.MPI1.x or oasis4.MPI2.x (according
to the choice of MPI1 or MPI2 done at compilation, see section 6 for details).

2.4.2 Other OASIS4 directories

In the prism/src/mod/oasis4 directory, three more directories/doc , /examples and /util
are found:

• /doc contains OASIS4 documentation.

2.4. OASIS4 DIRECTORY STRUCTURE 5

srcdoc utilexamples

make_dir xmlfiles

TopOasis4Makefile

make.your_platform

make.inc

prism/src/mod/oasis4

create_restart

ad.xsd

…

smioc.xsd

mppnccombine

mppnccombine.c

Figure 2.2: Directories in prism/src/mod/oasis4

• /examples and its sub-directory/create restart contains programs which provide example
on how to use the PSMILeprism put restart routine to create an OASIS4 coupling restart
file (see the README therein).

• /util contains directory/make dir into which a top makefile and platform dependent header
files for compiling OASIS4 without using the SCE can be found (see section 6.2.1), directory
/xmlfiles which contains the SCHEMAs of the different XML files used with OASIS4 (see sec-
tion 5), and directorymppnccombine which contains a program,mppnccombine.nc , which
may be used to join together NetCDF data files representing a decomposed domain into a unified
NetCDF file.

2.4.3 The toy coupled model TOYOA4 directory structure

TOYOA4 provides a practical example on how to use OASIS4 to couple 3 component models. The
sources for each toy component model are included in the PRISM directory structure with one directory
for each component, respectively in/prism/src/mod/atmoa4 , /oceoa4 , and/lanoa4 . Section
6.2 details how to compile those three toy component models while section 6.3 explains how to run the
resulting toy coupled model TOYOA4.

6 CHAPTER 2. OASIS4 SOURCES

atmoa4

prism

src

mod

src

libatmoa4.a liboceoa4.a liblanoa4.a

atmoa4.MPI[1/2].x

lanoa4oceoa4

src src

oasis4

lib

psmile_oa4common_oa4 mpp_io

oceoa4.MPI[1/2].x lanoa4.MPI[1/2].x

libcommon_oa4.a libmpp_io.a libpsmile_oa4.a

Figure 2.3: Directory structure for TOYOA4

Chapter 3

OASIS4 Driver/Transformer

OASIS4 Driver/Transformer tasks are described in this chapter to give the user a complete understanding
of OASIS4 functionality. The realisation of these tasks at run-time is however completely automatic and
transparent for the user. OASIS4 Driver/Transformer is parallel, although only the main process is used to
execute the Driver’s tasks.

3.1 The Driver part

The first task of the Driver is to get the process management information defined by the user in the SCC
XML file (see section 5.4). The information is first extracted using the libxml C library (11), and then
passed from C to Fortran to fill up the Driver structures.

Once the Driver has accessed the SCC XML file information, it will, if the user has chosen thespawn
approach, launch the different executables (or applications) that compose the coupled model, following the
information given in the SCC file. For thespawn approach, only the Driver should therefore be started and
a full MPI2 implementation (5) is required as the Driver uses the MPI2MPI CommSpawn Multiple
functionality. If only MPI1 implementation is available (9), the Driver and the applications must be
all started at once in the run script; this is the so-callednot spawn approach. The advantage of the
spawn approach is that each application keeps its own internal communication context (e.g. for internal
parallelisation) unchanged as in the standalone mode, whereas in thenot spawn approach, OASIS4
has to recreate an application communicator that must be used by the application for its own internal
parallelisation. Of course, thenot spawn is also possible if an MPI2 library is used.

The Driver then participates in the establishment of the different MPI communicators (see section 4.1.3),
and transfers the relevant SCC information to the different component modelPSMILes (corresponding to
theirprism init call, see section 4.1.1).

When the PRISM simulation context is set, the Driver accesses the SMIOCs XML files information (see
section 5.5), which mainly defines all coupling and I/O exchanges (e.g. source or target components or
files, local transformations, etc.). The Driver sorts this component specific information, and defines global
identifiers for the components, their grids, their coupling/IO fields, etc. to ensure global consistency be-
tween the different processes participating in the coupling. Finally, the Driver sends to each component
PSMILe the information relevant for its coupling or I/O exchanges (e.g. source or target components or
files and their global identifier) and information about the transformations required for the different cou-
pling fields. This corresponds to the componentPSMILe prism init comp call (see section 4.1.2)1.
With such information, the PRISM applications and components are able to run without any other interac-
tions with the Driver. Analysing the XML information, the PRISM Driver is able to determine how many

1If the component is running stand-alone, i.e. without a Driver, thePSMILe component automatically reads its SMIOC
information below theprism init comp call. In this case, the component SMIOC is used to configures the I/O of the
component from/to files.

7

8 CHAPTER 3. OASIS4 DRIVER/TRANSFORMER

Transformer processes are specified, if any. The Driver processes are then used to execute the Transformer
routines (see Section 3.2).

When a component reaches the end of its execution, its processes send a signal to the Transformer instance
by calling the PRISMTerminate routine (see Section 4.7.1). Once the Transformer instance has received
as many signals as processes active in the coupled run, the Transformer routines stop and the Driver
finalizes the simulation.

3.2 The Transformer part

The PRISM Transformer manages the regridding (also called the interpolation) of the coupling fields,
i.e. the expression on the target component model grid of a coupling field given by a source component
model on its grid. The Transformer performs only the weights calculation and the regriddingper se. As
explained in section 4.5.1, the neighborhood search, i.e. the determination for each target point of the
source points that will contribute to the calculation of its regridded value, is performed in parallel in the
sourcePSMILe.

The PRISM Transformer can be assimilated to an automate that reacts following predefined sequences of
actions considering what is demanded. The implementation of the Transformer is based on a loop over the
receptions of predefined arrays of ten Integers sent by the componentPSMILe . These ten integers give a
clear description of what has to be done by the Transformer. The Transformer is thus able to react with a
pre-defined sequence of actions matching the corresponding sequence activated on the sender side.

The first type of action that can be requested by the componentPSMILe is to receive the grid information
resulting of the different neighbouring searches. The Transformer receives, for each intersection of source
and target process calculated by thePSMILe , the latitude, longitude, mask, or areas of all source and
target grid points in the intersection involved in the regridding (EPIOS and EPIOT, see section 4.5.1).
The Transformer then calculates the weight corresponding to each source neighbour depending on the
regridding method chosen by the user. The end of this phase corresponds in the component models to the
PSMILe routineprism enddef .

During the simulation timestepping, the Transformer receives orders from thePSMILe linked to the
different component processes to receive data for transformation (source component process) or to send
transformed data (target component process). After a reception, the Transformer applies the appropriate
transformations or regridding following the information collected during the initialisation phase (here, the
regridding corresponds to applying the pre-calculated weights to the source field). In case of request of
fields, the Transformer is able to control if the requested field has already been received and transformed.
If so, the data field is sent; if not, the data field will be sent as soon as it will have been received and
treated.

At the end of the run, the Transformer is informed by the participating processes once they are ready to
finish the coupled simulation; the Transformer then gives the hand back to the Driver.

Chapter 4

OASIS4 Model Interface library, PSMILe

To communicate with the rest of the coupled system, each component model needs to perform appropriate
calls to thePRISMSystem Model Interface Library (PSMILe). ThePSMILe is the software layer that
manages the coupling data flow between any two (possibly parallel) component models, directly or via
additional Transformer processes, and handles data I/O from/to files.

ThePSMILe is layered, and while it is not designed to handle the component internal communication, it
completely manages the communication to other model components and the details of the I/O file access.
The detailed communication patterns among the possibly parallel component models are established by
thePSMILe. They are based on the source and target components identified for each coupling exchange
by the user in the SMIOC XML files (see section 5.5) and on the local domain covered by each component
process. This complexity is hidden from the component codes as well as the exchanges of coupling fields
per sebuilt on top of MPI. In order to minimize communication, thePSMILe also includes some local
transformations on the coupling fields, like accumulation, averaging, gathering or scattering, and performs
the required transformation locally before the exchange with other components of thePRISMsystem.

The interface was designed to keep modifications of the model codes at a minimum when implementing
the API. Some complexity arises however in the API from the need to transfer not only the coupling data
but also the meta-data as will be explained below.

In order to match the data structures of the various component codes (in particular for the geograph-
ical information) as closely as possible, Fortran90 overloading is used. All grid description and field
arrays provided by the component code through thePSMILe API (e.g. the grid point location through
prism set points , see 4.3.6) can have one, two or three numerical dimensions and can be of type
“Real” or “Double precision”. There is no need to copy the data arrays prior to thePSMILe API call
in order to match some predefined internalPSMILe shape. To interpret the received array correctly, a
properly defined grid type is required (see section 4.3.1), since the grid type implicitly specifies the shape
of the data arrays passed to thePSMILe.

A major principle followed throughout the declaration phase and during the transmission of transient fields
is that of using identifiers (ID) to data objects accessible in the user space once they have been declared.
Like in MPI, the memory that is used for storing internal representations of various data objects is not
directly accessible to the user, and the objects are accessed via their ID. Those IDs are of type INTEGER

and represent an index in a table of the respective objects. The object and its associated ID are significant
only on the process where it was created.

ThePSMILe API routines that are defined and implemented are not subject to modifications between the
different versions of thePRISM coupler. However new routines may be added in the future to support
new functionality. In addition to that thePSMILe is extendable to new types of coupling data and grids.

The next sections describe the functioning of thePSMILe, and explain its different routines in the logical
order in which they should be called in a component model.

9

10 CHAPTER 4. OASIS4 MODEL INTERFACE LIBRARY, PSMILE

4.1 Initialisation phase

The developer first has to use in his code the PRISM module (‘use PRISM’ , see
prism/src/lib/psmile oa4/src/prism.F90), which declares all PRISM structures and PRISM
integer named parameters fromprism/src/lib/common oa4/include/prism.inc (data types,
grid types, error codes, etc.). The following routines then participate in the coupling initialisation phase:

4.1.1 prism init

prism init (appl name, ierror)

Argument Intent Type Definition

appl name In character(len=*) name of application in SCC XML file
ierror Out Integer returned error code

Table 4.1: prism init arguments

The initialisation of the PRISM interface and the coupling environment is performed with a call to
prism init . This routine belongs to the class of so-called collective calls and therefore has to be called
once initially by each process of each application, either directly or indirectly via
prism init comp (see 4.1.2).

Since all communication is built on MPI routines, the initialisation of the MPI library is checked be-
low prism init , and a call toMPI Init is performed if it has not been called already by the ap-
plication. It is therefore not allowed to place a call toMPI Init after theprism init call in the
application code, since this will lead to a runtime error with most MPI implementations. Conversely,
a call to prism terminate (see 4.7.1) will terminate the coupling. IfMPI Init has been called
beforeprism init , internal message passing within the application is still possible after the call to
prism terminate ; in this case,MPI Finalize must be called somewhere afterprism terminate
in order to shut down the parallel application in a well defined way.

Within prism init , it is detected if the coupled model has been started in thespawn or not spawn
mode (see 3.1). Inspawn mode, all spawned processes remain inprism init and participate in the
launching of further processes until the spawning of all applications is completed.

Below prism init call, the SCC XML information (see 5.4) is transfered from the Driver to the appli-
cation processPSMILe (see 3.1).

4.1.2 prism init comp

prism init comp (comp id, comp name, ierror)

Argument Intent Type Definition

comp id Out Integer returned component ID
comp name In character(len=*) name of component in SCC XML file
ierror Out Integer returned error code

Table 4.2: prism init comp arguments

prism init comp needs to be called initially by each process once for each component model executed
by the process, no matter if different component models are executed sequentially by the process or if the
process is devoted to only one single component model.

If prism init has not been called before by the process,prism init comp calls it and returns with
a warning. Although recommended, it is therefore not necessary to implement a call toprism init .

4.1. INITIALISATION PHASE 11

Below theprism init comp call, the component SMIOC XML information (see 5.5) is transfered
from the Driver to the component processPSMILe or is read directly by thePSMILe itself in the stand-
alone case (see 3.1).

4.1.3 prism get localcomn

prism get localcomm (comp id, local comm, ierror)

Argument Intent Type Definition

comp id In Integer component ID orPRISM Appl id
local comm Out Integer returned MPI communicator to be used by the component or

the application for its internal communication
ierror Out Integer returned error code

Table 4.3: prism get localcomm arguments

MPI communicators for the application and the component model internal communication, separated from
the MPI communicators used for coupling exchanges, are provided by thePSMILe and can be accessed
via prism get local comm.

If comp id argument is the component ID returned by routineprism init comp, local commis
a communicator gathering all component processes which calledprism init comp with the same
comp name argument; if instead, the predefined named integerPRISM appl id is provided, the re-
turnedlocal commis a communicator gathering all processes of the application.

This routine needs to be called only by MPI parallel code; it is the only MPI specific call in thePSMILe
API.

4.1.4 prism initialized

prism initialized (flag, ierror)

Argument Intent Type Definition

flag Out Logical logical indicating whetherprism init was already called or not
ierror Out Integer returned error code

Table 4.4: prism initialized arguments

This routine checks ifprism init has been called before. Ifflag is true,prism init was success-
fully called; if flag is false,prism init was not called yet.

12 CHAPTER 4. OASIS4 MODEL INTERFACE LIBRARY, PSMILE

4.2 Retrieval of SCC XML information

This section presentsPSMILe routine that can be used in the application code to retrieve SCC XML
information (see 5.4).

4.2.1 prism get nb ranklists

prism get nb ranklists (comp name, nb ranklists, ierror)

Argument Intent Type Definition

comp name In character(len=*) name of the component in the SCC XML file
nb ranklists Out Integer number of rank lists for the component in the

SCC file
ierror Out Integer returned error code

Table 4.5: prism get nb ranklists arguments

This routine needs to be called beforeprism get ranklists (see 4.2.2) to obtain the number of rank
lists that are specified for the component model in the SCC XML file (i.e. the number of elementsrank
specified for the elementcomponent , see 5.4).

4.2.2 prism get ranklists

prism get ranklists (comp name, nb ranklists,ranklists, ierror)

Argument Intent Type Definition

comp name In character(len=*) name of the component in the SCC XML file
nb ranklists In Integer number of rank lists
ranklists Out Integer Array(nb ranklists,3) contain-

ing for the nb ranklists lists of
component ranks: a minimum value
(nb ranklists,1) , a maximum value
(nb ranklists,2) , an increment value
(nb ranklists,3) .

ierror Out Integer returned error code

Table 4.6: prism get ranklists arguments

This routine returns the lists of ranks that are specified for the component in the SCC XML file. The ranks
are the numbers of the application processes used to run the component model; in the SCC XML file, the
component model ranks are given as lists of 3 numbers giving, in each list, a minimum value, a maximum
value, and an increment value (see also section 5.4). For example, if processes numbered 0 to 7 are used
to run a component model, this can be describe with one rank list (0, 7, 1); if processes 0 to 2 and 5 to 7
are used, this can be described with two rank lists (0, 2, 1) and (5, 7, 1). If no maximum values is specified
in the SCC file the maximum value is set to the minimum value. If no increment is specified the increment
is set to 1.

Rationale: The application rank lists may be needed before the call toprism init comp in order to
run the components according to the rank lists. Since a component ID is available only after the call to
prism init comp, the component name is required as input argument to theprism get ranklists
call instead of the component ID.

4.3. GRIDS AND RELATED QUANTITIES DEFINITION 13

4.3 Grids and related quantities definition

In order to describe the grids on which the variables of component models are placed, the following
approach was chosen.

The first step is to declare a grid (seeprism def grid in 4.3.1). The grid volume elements which
discretize the sphere need then to be defined by providing the corner points (vertices) of these volume
elements (seeprism set corners in 4.3.2). At this time, other properties of these volume elements
can also provided, such as the volume element mask (seeprism set mask in 4.3.3).

In a second step, different sets of points on which the component model calculates its variables can be
placed in these volume elements. Usually, there will be only one definition of volume elements per
grid but a larger number of sets of points for different variables on the same grid. The model developer
describes where the points are located (seeprism set points in 4.3.6). Points can represent means,
extrema or other properties of the variables within the volume.

3D description of all grids

All grids have to be described as covering a 3D domain. A 2D surface in a 3D space necessarily requires
information about the location in the third dimension. For example, the grid used in an ocean model to
calculate the field of sea surface temperature (SST) would be described vertically by a coordinate array
of extent 1 in the vertical direction; the (only) level at which the SST field is calculated would be defined
(prism set points) as well as its vertical bounds (prism set corners).

Fields not located on a geographical grid (‘gridless’ grids)

The description of the grid and related quantities is done locally for the domain treated by the local
process. The communication patterns used to exchange the coupling fields will usually be based on the
geographical description of the local process domain.Note that the IO of fields located on a non-
geographical grid are not supported in the current OASIS4 version. For fields located on a non-
geographical grid, the coupling exchanges are also supported, based on the description of the local process
partition in terms of indices in the global index space (see 4.3.1 and 4.3.4).

14 CHAPTER 4. OASIS4 MODEL INTERFACE LIBRARY, PSMILE

4.3.1 prism def grid

prism def grid (grid id, grid name, comp id, grid valid shape, grid type,
ierror)

Argument Intent Type Definition

grid id Out Integer returned grid ID
grid name In character(len=*) name of the grid (see below)
comp id In Integer component ID as provided by

prism init comp
grid valid shape In Integer array(2, ndim) (see Table 4.8) giving

for each dimension the minimum and
maximum index of the valid range (see
below)

grid type In Integer PRISM integer named parameter de-
scribing the grid structure (see Table
4.8)

ierror Out Integer returned error code

Table 4.7: prism def grid arguments

This routine declares a grid and describes its structure.

• grid name

The argumentgrid name must match the attribute ‘localname’ of the corresponding element
‘grid’ in the PMIOD and SMIOC XML files and must be unique within the component.

• grid valid shape

The arraygrid valid shape is dimensioned (2,ndim) and gives, for each of thendim dimen-
sions (see Table 4.8), the minimum and maximum local index values corresponding to the “valid”
part of the arrays treated by the process, without the halo region, i.e.iloclow, ilochigh, jloclow, jlochigh

on figure 4.1. For example, if the extent of the first dimension is 100, it may be that the “valid” part
of the array goes from 2 to 98.

• grid type

The argumentgrid type describes the grid type and implicitly specifies the shape of the grid and
field arrays passed to thePSMILe. Grids that are currently supported cover:

– in the horizontal: regular, irregular, Gaussian reduced (and unstructured for I/O only)

– in the vertical: regular (and unstructured for I/O only)

Non-geographical grids (‘gridless’ grids) are also supported for repartitioning,but not for I/O (in
the current version).

Table 4.8 lists:

– the possible values ofgrid type for the different grids supported byPSMILe;

– the corresponding shape of the grid arrayspoints 1st array ,
points 2nd array , points 3rd array in prism set points ;

– the corresponding shape of the arraysmask array , andvar array respectively inprism set mask,
andprism put / prism get ;

– corresponding number of dimensionsndim .

Other characteristics of the grid will be described by other routines, and the link will be made by
the grid identifiergrid id .

Gaussian reduced grids.For Gaussian reduced grids, all processes defining the grid have to call
prism def grid with grid type=PRISM gaussreduced regvrt . Two numerical dimensions

4.3. GRIDS AND RELATED QUANTITIES DEFINITION 15

valid shape

(ilochigh,jlochigh)

(iloclow,jloclow)

(ihalohigh,jhalohigh)

(ihalolow,jhalolow)

actual shape

local part

Figure 4.1: Valid shape and actual shape

grid type 1st array 2nd array 3rd array maskarray ndim
var array

PRISM gridless 3
PRISM reglonlatvrt (i) (j) (k) (i,j,k) 3
PRISM gaussreduced regvrt (npt hor) (npt hor) (k) (npt hor,k) 2
PRISM irrlonlat regvrt (i,j) (i,j) (k) (i,j,k) 3
PRISMunstructlonlatregvrt (npt hor) (npt hor) z(k) (npt hor,k) 2
PRISMunstructlonlatvrt (npt tot) (npt tot) (npt tot) (npt tot) 1

Table 4.8: Possible values of grid type for the different grids supported by PSMILe.
PRISM unstructlonlat regvrt and PRISM unstructlonlatvrt are supported for
I/O only.PRISM gridless is supported for repartitioning only.

(ndim =2) are used to describe the 3D domain: the first dimension covers the horizontal plane and the
second dimension covers the vertical. Furthermore, all these processes have to provide a description of the
global reduced gaussian grid by a call toprism reducedgrid map (see 4.3.5), and have to describe
the local partition of the grid with a call toprism def partition (unless there is no partitioning or
if the partitioning is only vertically i.e. level per level, see 4.3.4).

Non-geographical grids. For fields located on a non-geographical grid,prism def grid still has to
be called withgrid type = PRISM gridless . For coding reasons,ndim must be always equal
to 3 in this case; if in fact the 2nd and/or 3rd dimensions do not exist, the call toprism def grid
must be done withgrid valid shape(1:2, 2) and/orgrid valid shape(1:2, 3) equal
to PRISM undefined . The partitioning of non-geographical grids must also be described by a call
to prism def partition (see 4.3.4); furthermore, a call toprism set points gridless (see
4.3.7) is also required.

Unstructured grids. ThePSMILe API as it is currently defined is able to receive and store coordinates of
unstuctured grids (see grid typesPRISM unstructlonlat regvrt , PRISM unstructlonlatvrt).
I/O of fields defined on unstructured grids are supported as long as the partition definition of the grid is
provided with a call toprism def partition (see 4.3.4). However, as additional information and

16 CHAPTER 4. OASIS4 MODEL INTERFACE LIBRARY, PSMILE

related API routines would have to be defined for processing coupling fields provided on those grids,
coupling of fields defined on an unstructured grid is not covered yet.

4.3.2 prism set corners

prism set corners (grid id, nc, corner actual shape, corner 1st array,
corner 2nd array, corner 3rd array, ierror)

Argument Intent Type Definition

grid id In Integer grid ID returned byprism def grid
nc In Integer total number of corners for each volume

element
corner actual shape In Integer array(2,ndim) giving for eachndim

dimension ofcorner xxx array the
minimum and maximum index of the ac-
tual range (see below)

corner 1st array In Real or Double corner longitude (see Table 4.10)
corner 2nd array In Real or Double corner latitude (see Table 4.10)
corner 3rd array In Real or Double corner vertical position (see Table 4.10)
ierror Out Integer returned error code

Table 4.9: prism setcorners arguments

For geographical grids, the volume elements which discretize the computing domain covered locally by
the process are defined by giving the corner points (vertices) of those volume elements. The exchange and
repartitioning between two coupled component models of a field provided on a geographical grid will be
based on this geographical description of the local partition.

• corner actual shape

The arraycorner actual shape is dimensioned (2,ndim) and gives, for each of thendim
dimensions (see Table 4.8), the minimum and maximum local index values corresponding to the
“actual” part of the arrays treated by the process including halo regions.corner actual shape
is therefore greater or equal to thegrid valid shape (see section 4.3.1). For example, if the
actual extent of the first dimension is 100, it may be that the valid index goes from 0 to 99, or from
1 to 100.

• corner xxx array

Units of corner xxx array

Units of arrayscorner xxx array describing the grid volume elements should be indicated in
the PMIOD and SMIOC XML files; they are not included in theprism set corners call.

Currently, the arraycorner 1st array must be provided in degrees East; there is no particular
restriction in the numbers used (e.g. numbers greater than 360, or negative numbers are supported)
but longitudes of the corners of one cell have to define the size of the cell (e.g. a cell with corners at 5
and 355 is a cell of 350 degrees, not a cell of 10 degrees). Currently, the arraycorner 2nd array
must be provided in degrees North (spherical coordinate system); negative numbers are of course
supported. Other units will eventually be supported later when appropriate automatic conversion
will be implemented.

For corner 3rd array , units must be the same on the source and target sides.

Shape ofcorner actual shape

Table 4.10 gives the expected shape of thecorner xxx array for the variousgrid type .
When applicable, Fortran ordering must be used to define the corners. ForPRISM irrlonlat regvrt ,
the corners have to be given counterclockwise looking in the k positive direction.

4.3. GRIDS AND RELATED QUANTITIES DEFINITION 17

grid type corner1st array corner2nd array corner3rd array

PRISM reglonlatvrt (i,2) (j,2) (k,2)
PRISM gaussreduced regvrt (npt hor,2) (npt hor,2) (k,2)
PRISM irrlonlat regvrt (i,j, nchalf) (i,j, nchalf) (k,2)

Table 4.10:Dimensions ofcorner xxx arrays for the variousgrid type ; nc is the total number of corners
for each volume element;nc half is nc divided by 2;i , j , k , npt hor are the extent of the respective
numerical dimensions (see Table 4.8).

4.3.3 prism set mask

prism set mask(mask id, grid id, mask actual shape, mask array,
new mask, ierror)

Argument Intent Type Definition

mask id InOut Integer mask ID
grid id In Integer grid ID returned byprism def grid
mask actual shape In Integer array(2,ndim) giving for each ndim di-

mension of mask array the minimum
and maximum index of actual range (see
corner actual shape in 4.3.2)

mask array In Logical array of logicals; see Table 4.8 for its dimensions;
if an array element is .true. (.false.), the corre-
sponding field grid point is (is not) valid.

new mask In Logical if .true. a mask is specified for the first time for
this maskid (Out); if .false. mask values for this
maskid (In) are updated

ierror Out Integer returned error code

Table 4.11:prism setmask arguments

This routine defines a mask array. Different masks can be defined for the same grid. One particular mask
will be attached to a field by specifying the correspondingmask id in theprism def var call used to
declare the field (see section 4.4.1).

4.3.4 prism def partition

prism def partition (grid id, nbr subdomains, offset array, extent array,
ierror)

The local partition treated by the model process can also be described in term of indices in the global
index space with a call toprism def partition . Calling this routine is mandatory for the grids
listed below.

The global index space is a unique and common indexing for all grid points of the component model.
For example, if a component model covers a global domain of 200 grid points that is distributed over
two processes covering 100 points each, the first and second partitionlocal indices can both be (1:100);
however, theirglobal indices will be respectively (1:100) and (101:200).

A partition may also cover different sets of points disconnected in the global index space; each one of
those sets of point constitutes one subdomain and has to be described by its offset and extent in the
global index space. Let’s suppose, for example, that the 200 grid points of a component model are dis-
tributed over two processes such that points 1 to 50 and 76 to 100 are treated by the first process and

18 CHAPTER 4. OASIS4 MODEL INTERFACE LIBRARY, PSMILE

Argument Intent Type Definition

grid id In Integer grid ID returned byprism def grid
nbr subdomains In Integer number of subdomains, in the global index space, cov-

ered by thegrid valid shape domain
offset array In Integer array(nbr subdomains, ndim) containing for each

subdomain the offset in eachndim dimension in the
global index space.

extent array In Integer array(nbr subdomains, ndim) containing for each
subdomain the extent in eachndim dimension in the
global index space.

ierror Out Integer returned error code

Table 4.12:prism def partition arguments

such that points 51 to 75 and 101 to 200 are treated by the second process. In this case, the number
of subdomains for each process is 2, and the first process subdomains can be described with global off-
sets of 0 and 75 (offset array(1,1)=0 , offset array(2,1)=75) and extents of 50 and 25
(extent array(1,1)=50 , extent array(2,1)=25), while the second process subdomains can
be described by global offsets of 50 and 100 (offset array(1,1)=50 , offset array(2,1)=100)
and extent of 25 and 100 (extent array(1,1)=25 , extent array(2,1)=100)1.

Gaussian reduced grids. For those grids,prism def partition must be called by each model pro-
cess to describe its local partition, unless there is no partitioning or if the partitioning is done only vertically
(i.e. level per level). In this OASIS4 version, the horizontal partitioning, if any, must be the same for all
vertical levels; therefore,offset array(:,2) must always be equal 0 andextent array(:,2)
must always be equal to the number of vertical levels. The horizontal partitioning, described by
offset array(:,1) andextent array(:,1) , must describe each latitude band of the reduced
grid local partition as a subdomain on its own. Theoffset array(:,1) refer to the offset of each sub-
domain in a horizontal global index space defined as the sequence of points starting at the most northern
(or southern) latitude band and is going down in circular manner to the most southern (or northern) latitude
band. Note that in addition all processes have to callprism reducedgrid map for a description of
the global reduced Gaussian grid (see 4.3.5).

Unstructured grids. For I/O of a field given on an unstructured grid, a call toprism def partition
is mandatory to use the parallel I/O mode (see section 4.6).

Non-geographical grids (‘gridless’ grids). Coupling exchanges(but not I/O in the current version)
of fields not located on a geographical grid are supported, based on the description of the process local
partition in terms of indices in the global index space. A call toprism def partition is therefore
mandatory for such grids.

4.3.5 prism reducedgrid map

prism reducedgrid map (grid id, nbr latitudes, nbr points per lat, ierror)

Argument Intent Type Definition

grid id In Integer grid ID returned byprism def grid
nbr latitudes In Integer number of latitudes of the global grid
nbr points per lat In Integer array(nbr latitudes) containing for each lati-

tude the number of grid points in longitude.
ierror Out Integer returned error code

Table 4.13:prism reducedgridmap arguments

1Note that this example supposesndim =1.

4.3. GRIDS AND RELATED QUANTITIES DEFINITION 19

For Gaussian reduced grids only. All processes that announce a Gaussian reduced grid have to call
prism reducedgrid map for a description of the global reduced Gaussian grid, providing the same
identical information about the global grid..

20 CHAPTER 4. OASIS4 MODEL INTERFACE LIBRARY, PSMILE

4.3.6 prism set points

prism set points (point id, point name, grid id, points actual shape,
points 1st array, points 2nd array, points 3rd array,
new points, ierror)

Argument Intent Type Definition

point id InOut Integer ID for the set of points
point name In character(len=*) name of the set of points: must

match the attribute ‘localname’
of the corresponding element
‘points’ in the PMIOD and
SMIOC XML files and must be
unique within the component.

grid id In Integer grid ID returned by
prism def grid

points actual shape In Integer array(2,ndim) giving for
each ndim dimension of
points xxx array the
minimum and maximum
index of actual range (see
corner actual shape in
4.3.2)

points 1st array In Real or Double array giving the longitudes for
this set of grid points; see Table
4.8 for its dimensions

points 2nd array In Real or Double array giving the latitudes for this
set of grid points; see Table 4.8
for its dimensions

points 3rd array In Real or Double array giving the vertical positions
for this set the grid points; see Ta-
ble 4.8 for its dimensions

new points In Logical if .true. points are specified for
the first time for this pointid
(Out); if .false. points for this
point id (In) are updated

ierror Out Integer returned error code

Table 4.14:prism setpoints arguments

With prism set points the model developer describes the geographical location of the variables on
the grid. Variables can represent means, extrema or other properties of the variables within volume.
Different sets of points can be defined for the same grid (staggered grids); each set will have a differ-
ent point id . A full 3D description has to be provided; for example, a set of points discretizing a
2D surface must be given a vertical position. Units forpoints 1st array , points 2nd array
and points 3rd array must be respectively the same than the ones forcorner 1st array ,
corner 2nd array andcorner 3rd array (see section 4.3.2).

Non-geographical grids.For non-geographical grids (‘gridless’ grids),prism set points gridless
should be called instead ofprism set points (see 4.3.7).

4.3. GRIDS AND RELATED QUANTITIES DEFINITION 21

4.3.7 prism set points gridless

prism set points gridless(point id, point name, grid id, new points, ierror)

Argument Intent Type Definition

point id InOut Integer set of points ID
point name In character(len=*) name of the set of points: must match the at-

tribute ‘local name’ of the corresponding ele-
ment ‘points’ in the PMIOD and SMIOC XML
files and must be unique within the component.

grid id In Integer grid ID returned byprism def grid
new points In Logical if .true. points are specified for the first time

for this point id (Out); if .false. points for this
point id (In) are updated

ierror Out Integer returned error code

Table 4.15:prism setpointsgridless arguments

The routineprism set points gridless has to be called for non-geographical grids to retrieve a
grid point ID.

4.3.8 prism set vector

prism set vector (vector id, vector name, array ids, new vector, ierror)

Argument Intent Type Definition

vector id InOut Integer ID of the vector sets of points
vector name In character(len=*) name of the vector set of points: must

match the attribute ‘localname’ of the corre-
sponding element ‘vector’ in the PMIOD and
SMIOC XML files and must be unique within
the component.

array ids In Integer array(3) containing thepoint id s returned
by previous calls toprism set points
used to define the set of points for each vector
component

new vector In Logical if .true. vector sets of points are specified for
the first time for this vectorid (Out); if .false.
vector sets of points for this vectorid (In) are
updated

ierror Out Integer returned error code

Table 4.16:prism setvector arguments

For vector fields, sets of points which have been defined for each vector component by a previous call to
prism set points can be linked together with a call toprism set vector (e.g. on a Arakawa C
grid all three vector components are located on different sets of point in the physical space). In any case,
three validpoint id s need to be specified inarray ids . I/O of vector fields are currently supported
but coupling of vector fields are not.

22 CHAPTER 4. OASIS4 MODEL INTERFACE LIBRARY, PSMILE

4.4 Declaration of Coupling/IO fields

4.4.1 prism def var

prism def var(var id, var name, grid id, point id, mask id, var nodims,
var actual shape, var type, ierror)

Argument Intent Type Definition

var id Out Integer returned field ID
var name In character(len=*) name of the field: must correspond

to the attributelocal name of ele-
ment transient in the PMIOD and
SMIOX XML files and must be unique
within the component

grid id In Integer ID of the field grid (as returned by
prism def grid)

point id In Integer ID of the field set of points as re-
turned by prism set points (for
scalar field), or ID of the vec-
tor sets of points as returned by
prism set vector (for vector field)

mask id In Integer ID of the field mask as returned
by prism set mask, or ID of
the set of 3 masks as returned by
prism set vectormask (for vector
field), orPRISM UNDEFINED.

var nodims In Integer var nodims(1): the number of dimen-
sions of var array that will con-
tain the coupling/IO field (see 4.6),
i.e. ndim (see Table 4.8) except
for vector for which it is ndim+1 ;
var nodims(2): number of vector com-
ponents (3), 0 otherwise.

var actual shape In Integer array(2,ndim) giving for eachndim
dimension of var array the mini-
mum and maximum index of actual
range (seecorner actual shape
in 4.3.2)

var type In Integer field type: PRISM in-
teger named parameter
PRISM Integer , PRISM Real
or PRISM Double Precision

ierror Out Integer returned error code

Table 4.17:prism def var arguments

After the initialisation and grid definition phases, each field that will be send/received to/from another
component model (coupling field) or that will be written/read to/from a disk file (IO field) through
PSMILe‘put’/‘send’ actions needs to be declared and associated with a previously defined grid and mask.

The units of a coupling/IO field should be indicated in the PMIOD XML file, not in its declaration call.
By consulting the appropriate PMIOD, the user is able to check if the units of a coupling field match on
the source and target side and if not, he has to choose appropriate transformations in the SMIOCs.

4.5. NEIGHBORHOOD SEARCH AND DETERMINATION OF COMMUNICATION
PATTERNS 23

4.5 Neighborhood search and determination of communication patterns

4.5.1 prism enddef

prism enddef (ierror)

Argument Intent Type Definition

ierror Out Integer returned error code

Table 4.18:prism enddef arguments

Followingprism init , prism enddef is the second collective call and has to be called once by each
application process when all components within the application have completed their definition phase.

To perform the exchange of coupling fields during the run, it is required to establish communication only
between those pairs of processes that actually have to exchange data based on the user defined coupling
configuration in the SMIOCs XML files (see section 5.5).

For each coupling exchange involving a regridding between the source and the target grids, the neighbor-
hood search is performed. It identifies, for each grid point of each target process, the source grid points
and corresponding source process that will be used to calculate the target grid point value. For a coupling
exchange involving only repartitioning, each target grid point corresponds exactly to only one source grid
point; in this case the ‘neighborhood search’ process identifies, for each grid point of each target process,
on which source process the matching source grid point is located.

In order to save memory and CPU time in the neighbourhood search and the establishment of the com-
munication patterns,prism enddef works in a parallel way on the local grid domain covered by each
application process as much as possible. In an initial step, each process calculates a bounding box covering
its local geographical volume domain previously defined byprism set corners (see section 4.3.2).
The bouding boxes of all processes are sent to and collected by all processes. Each source process calcu-
lates the intersection of its bounding box with each other process bounding box, thereby identifying the
potential interpolation partners and corresponding bounding box intersection. (For fields located on non-
geographical fields, see 4.3.1, the intersection calculation is based on the local domain description in the
global index space, see 4.3.4.) For each bounding box intersection, the source process creates a sequence
of simplified grids and corresponding bounding boxes, each one coarsened by a factor of 2 with respect
to the previous one, until falling back onto the bounding box covering the whole intersection (similar to a
Multigrid Algorithm). Starting on the coarsest level the search algorithm determines, at each multigrid
level, the source bounding box for each target grid point in the intersection. When the bounding box at
the finer level is identified, the neighbours of the target grid point, i.e. the source points participating in its
calculation (regridding case) or the matching source grid point (repartitioning only case), are identified.
For each intersection of source and target grid processes, the ‘Ensemble of grid Points participating in the
Interpolation Operation (EPIO)’ (or in the repartitioning) on the source side (EPIOS) and on the target
side (EPIOT) are identified. The results of this search are transfered to the target process. For the coupling
exchange involving regridding, the EPIOS and EPIOT definition and all related grid information are also
transferred to the Transformer (see section 3.2).

As the results of the neighbourhood search are known in the sourcePSMILe, only the usefull grid points
will be effectively sent later on during the coupling exchanges, minimizing the amount of data to be
transferred.

24 CHAPTER 4. OASIS4 MODEL INTERFACE LIBRARY, PSMILE

4.6 Exchange of coupling and I/O fields

ThePSMILe exchanges are based on the principle of “end-point” data exchange. When producing data,
no assumptions are made in the source component code concerning which other component will consume
these data or whether they will be written to a file, and at which frequency. Likewise, when asking for data
a target component does not know which other component model produces them or whether they are read
in from a file. The target or the source (another component model or a file) for each field is defined by
the user in the SMIOC XML file (see section 5.5) and the coupling exchanges and/or the I/O actions take
place according to the user external specifications. The switch between the coupled mode and the forced
mode is therefore totally transparent for the component model. Furthermore, source data can be directed
to more than one target (other component models and/or disk files).

The sending and receivingPSMILe callsprism put andprism get can be placed anywhere in the
source and target code and possibly at different locations for the different coupling fields. These routines
can be called by the model at each timestep. The actual date at which the call is performed and the date
bounds for which it is valid are given as arguments; the sending/receiving is actually performed only if the
date and date bounds corresponds to a time at which it should be activated, given the field coupling or I/O
dates indicated by the user in the SMIOC; a change in the coupling or I/O dates is therefore also totally
transparent for the component model itself. ThePSMILe can also take into account a timelag between
the sendingprism put and the correspondingprism get defined by the user in the SMIOC (see item
6. of section 5.5.4).

Local transformations can be performed in the source componentPSMILe below theprism put and/or
in the target componentPSMILe below theprism get like time accumulation, time averaging, alge-
braic operations, statistics, scattering, gathering (see item 7. of section 5.5.4 and item 5. of section 5.5.5).

When the action is activated at a coupling or I/O date, each process sends or receives only its local partition
of the data, corresponding to its local grid defined previously. The coupling exchange, including data
repartitioning if needed, then occurs, either directly between the component models, or via additional
Transformer processes if regridding needed (see section 3.2).

If the user specifies that the source of aprism get or the target of aprism put is a disk file, the
PSMILe exploits the GFDL mppio package (2) for its file I/O. The supported file format is NetCDF
according to the CF convention (4). The mppio package is driven by aPSMILe internal layer which
interfaces with various sources of information. For instance, the definition of grids and masks as well
as the form of the data (bundle or vector) of a field is provided through thePSMILe API. On the other
hand the information with regard to the CF standard name and unit are provided by the SMIOC XML file
through the Driver.

The mppio package can operate in three general I/O modes:

- Distributed I/O

Each process works on a individual file containing the I/O field on the domain onto which that
process works. Domain partitioning information is written into the resulting files such they can be
merged into one file during a post processing step.

- Pseudo parallel I/O

The whole field is read from or written to one file. The domain partitioning information is exploited
such that the data are collected - stitched together - during the write operation or distributed to
the parallel processes of a component model during the read operation. This domain stitching or
distribution is automatically done by thePSMILe on the component model master process and
happens transparently for the parallel component model itself. For unstructured grids, this mode is
supported only if the definion of the local partition in terms of indices in the global index space is
provided withprism def partition (see section 4.3.4).

- Parallel I/O

A fully parallel I/O using the parallel NetCDF (7) library and MPI-IO is available. This allows

4.6. EXCHANGE OF COUPLING AND I/O FIELDS 25

parallel IO of distributed data into a single NetCDF file which is controlled by MPI-IO instead
of collecting the data on the master process first. To have this feature available the PSMILe has
to be linked against the parallel NetCDF library. The PSMILe library has to be generated with
-D PARNETCDF. Note that this type of IO is not yet supported for applications having more than
1 component.

The PSMILe I/O layer also copes with the fact that the input data may be spread accross a number of
different files2, and that NetCDF file format has certain restrictions with respect to size of a file. Therefore,
on output chunking of a series of time stamps across multiple files will be provided depending on a
threshold value of the file size.

4.6.1 prism put

prism put (var id, date, date bounds, var array, info, ierror)

Argument Intent Type Definition

var id In Integer field ID returned from
prism def var

date In Type(PRISM Time Struct) date at which theprism put is
performed

date bounds In Type(PRISM Time Struct) array(2) giving the date bounds be-
tween which this call is valid

var array In Integer, Real or Double field array to be sent (see Table 4.8
for its dimensions)

info Out Integer returned info about action per-
formed (see below)

ierror Out Integer returned error code

Table 4.19:prism put arguments

This routine should be called to sendvar array content to a target component or file. The target is
defined by the user in the SMIOC XML files (see section 5.5). This routine can be called in the component
model code at each timestep; the actual date at which the call is performed and the date bounds for which
it is valid must be given as arguments asPRISM Time Struct structures (see/prism/src/lib
/common oa4/src/prism constants.F90) ; the sending is actually performed only if the date
and date bounds corresponds to a time at which it should be activated, given the field coupling or I/O dates
indicated by the user in the SMIOC XML file.

The meaning of the differentinfo returned are as follows:

• PRISM NoAction = 0: no action is performed for this call

• PRISM Cpl = 1000: the array is only sent to another component

• PRISM CplIO = 1100: the array is sent to another component and written to a file

• PRISM CplRst = 1010: the array is sent to another component and written to a coupling restart file

• PRISM CplTimeop = 1001: the array is sent to another component and used in a time operation
(accumulation, averaging)

• PRISM CplIORst = 1110: the array is sent to another component, written to a file, and written to a
coupling restart file

2The system calls ’scandir’ and ’alphasort’ are used to implement this feature (see routine
/prism/src/lib/psmile oa4/src scandir.c). In case of problems with these system calls, one may
try to compile with the -D MYALPHASORT. If there are still problems, one has to comment the calls to
psmile io scandir no of files and psmile io scandir in psmile open file byid.F90 , but then that
PSMILe functionality will not be provided anymore.

26 CHAPTER 4. OASIS4 MODEL INTERFACE LIBRARY, PSMILE

• PRISM CplIOTimeop = 1101: the array is sent to another component, written to a file, and used in
a time operation

• PRISM CplRstTimeop = 1011: the array is sent to another component, written to a coupling restart
file, and used in a time operation

• PRISM CplIORstTimeop = 1111: the array is sent to another component, written to a file, written
to a coupling restart file, and used in a time operation

• PRISM IO = 100: the array is only written to a file

• PRISM IORst = 110: the array is written to a file and to a coupling restart file

• PRISM IOTimeop = 101: the array is written to a file and used in a time operation

• PRISM IORstTimeop = 111: the array is written to a file and to a coupling restart file and is used
in a time operation

• PRISM Rst = 10: the array is only written to a coupling restart file

• PRISM RstTimeop = 11: the array is written to a coupling restart file and used in a time operation

• PRISM Timeop = 1: the array is used in a time operation

The meaning of the differentierror returned can be accessed using the routineprism error (see
section 4.8.3).

This routine will return even if the correspondingprism get has not been performed on the target side,
both for an exchange through the Transformer and for a direct exchange (as the content of thevar array
is buffered in thePSMILe).

4.6.2 prism get

prism get(var id, date, date bounds, var array, info, ierror)

Argument Intent Type Definition

var id In Integer field ID returned by
prism def var

date In Type(PRISM Time Struct) date at which theprism get is
performed

date bounds In Type(PRISM Time Struct) array(2) giving the date bounds be-
tween which this call is valid

var array InOut Integer, Real or Double field array to be received (see Table
4.8 for its dimensions)

info Out Integer returned info about action per-
formed (see below)

ierror Out Integer returned error code

Table 4.20:prism get arguments

This routine should be called to receive a fieldvar array from a source component or file. The source
is defined by the user in the SMIOC XML files (see section 5.5). As forprism put , this routine can be
called in the component model code at each timestep; the actual date at which the call is performed and
the date bounds for which it is valid must be given as arguments; the receiving is actually performed only
if the date and date bounds corresponds to a time at which it should be activated, given the field coupling
or I/O dates indicated by the user in the SMIOC XML file.

Note thatvar array is of intentInOut . It is therefore updated only for the part for which data have
been effectively received. We therefore recommend to initializevar array with PRISM Undefined
(=-65535, seeprism/src/lib/common oa4/include/prism.inc) before theprism get to
be able to clearly identify the data received.

The meaning of the differentinfo returned are as follows:

4.6. EXCHANGE OF COUPLING AND I/O FIELDS 27

• PRISM NoAction = 0: no action is performed for this call

• PRISM Cpl = 1000: the array is only received from another component

• PRISM IO = 100: the array is read from a file

• PRISM IOTimeop = 101: the array is read from a file and used in a time operation

The meaning of the differentierror returned can be accessed using the routineprism error (see
section 4.8.3).

This routine will return only when the correspondingprism put is performed on the source side and
when data is available invar array , after regridding if needed.

4.6.3 prism put inquire

prism put inquire (var id, date, date bounds, info, ierror)

Argument Intent Type Definition

var id In Integer field ID returned from
prism def var

date In Type(PRISM Time Struct) date at which theprism put would
be performed

date bounds In Type(PRISM Time Struct) array(2) giving the date bounds be-
tween which the field would be valid

info Out Integer returned info about action that would
be performed (see below)

ierror Out Integer returned error code

Table 4.21:prism put inquire arguments

This function is called to inquire if the correspondingprism put (i.e. for samevar id , date , and
date bounds) would effectively be activated. This can be useful if the calculation of the related
var array is CPU consuming.

The meaning of the differentinfo returned are as for theprism put routine (see 4.6.1).

The meaning of the differentierror returned can be accessed using the routineprism error (see
section 4.8.3).

4.6.4 prism put restart

prism put restart (var id, date, date bounds, data array, info, ierror)

This function forces the writing of a field into a coupling restart file.

If a coupling restart file of a coupling field is needed3 but not available, it might be useful to run the source
component model beforehand to create the first coupling restart file of an experiment explicitly with a call
to prism put restart . The returnedinfo should always be PRISMRst = 10 (the array is only
written to a coupling restart file). The meaning of the differentierror returned can be accessed using
the routineprism error (see section 4.8.3).

To useprism put restart , one should pay attention to the following details:

• There must be a lag equal to 0 defined for the field in the appropriate smioc XML file (see 5.5.4) .

3For coupling fields with lag> 0 (see elementlag in section 5.5.4), a coupling restart file is needed to start the run. In this
case, two restart files are opened, one for reading and one for writing. At the beginning of a run, the respective sourcePSMILe
processes read their local part of the coupling field in the coupling restart file during theprism enddef phase and send it to
the Transformer which performs the interpolation and sends the interpolated field to the target component model. Below the last
call to prism put in the run, the coupling field is also automatically written to its writing coupling restart file; in this case the
<date> is the current run end date.

28 CHAPTER 4. OASIS4 MODEL INTERFACE LIBRARY, PSMILE

Argument Intent Type Definition

var id In Integer transient handle from
prism def var

date In Type(PRISM Time Struct) date at which the
prism put restart is per-
formed

date bounds In Type(PRISM Time Struct) array dimensioned (2) giving the
date bounds between which this data
is valid

data array In Integer, Real or Double data array to be transferred
info Out Integer returned info about action per-

formed
ierror Out Integer returned error code

Table 4.22:prism put restart arguments

• Since theprism enddef performs some IO related initialisation, aprism put restart can-
not be invoked before theprism enddef is completed.

• The time information for each data set that is written into the restart file corresponds to the upper
boundary of the time interval which is represented by the data set. To restart from a particular data
set the job start date indicated in the SCC.XML needs to correspond to the required time info in the
restart file.

• Currently it is only possible to dump raw fields into the NetCDF file. Fields written to a restart
file via prism put restart are currently taken as is and are not processed with respect to local
operations like gathering/scattering averaging, summation or any reduction operations.

• The name of the reading restart file will be<field local name> <componentlocal name>
- <applicationlocal name> rst.<date>, where<date> is the current run start date.

A concrete example on how to use the PSMILeprism put restart routine to create an OASIS4 cou-
pling restart file can be found in directoryprism/src/mod/oasis4/examples/create restart
(see the README therein).

4.7. TERMINATION PHASE 29

4.7 Termination Phase

4.7.1 prism terminate

prism terminate (ierror)

Argument Intent Type Definition

ierror Out Integer returned error code

Table 4.23:prism terminate arguments

In analogy to the initialisation phase, a call toprism terminate , which again is a collective call, will
make the calling process to wait for other processes participating in the coupling to reach theprism terminate
as well. At this point, the following actions are performed:

• All open units under control of thePSMILe are closed.

• The output to standard out is flushed.

• The Driver is notified about the termination of the respective process.

• All memory under control ofPSMILe is deallocated.

After calling prism terminate , no coupling exchanges are possible for this process and no further
I/O actions under control of thePSMILe can be performed; however, it is still possible for the application
to perform local operations and to write additional output which shall not be under control of thePSMILe.
If MPI Init has been called in the code before the call toprism init , component internal MPI com-
munication is still possible after the call toprism terminate , until theMPI Finalize is called by
the component (see also section 4.1.1). Otherwiseprism terminate will call MPI Finalize .

4.7.2 prism terminated

prism terminated (flag, ierror)

Argument Intent Type Definition

flag Out Logical if .true., prismterminate was already called
ierror Out Integer returned error code

Table 4.24:prism terminated arguments

This routine can be used to check whetherprism terminate has already been called by this process.
This may help to detect ambiguous implementations of multi-component applications.

4.7.3 prism abort

prism abort (comp id, routine, message)

Argument Intent Type Definition

comp id In Integer component ID as provided byprism init comp
routine In Character calling routine name
message In Character user defined message

Table 4.25:prism abort arguments

It is common practice in non parallel Fortran codes to terminate the program by calling a FortranSTOPin
case a runtime error is detected. In MPI-parallelized codes it is strongly recommended to callMPI Abort
instead to ensure that all parallel processes are stopped and thus to avoid non-defined termination of the
parallel program. For coupled application, thePSMILe provides aprism abort call which guarantees

30 CHAPTER 4. OASIS4 MODEL INTERFACE LIBRARY, PSMILE

a clean and well-defined shut down of the coupled model. We recommend to useprism abort instead
of a FortranSTOPor aMPI Abort .

4.8. QUERY AND INFO ROUTINES 31

4.8 Query and Info Routines

4.8.1 prism get calendar type

prism get calendar type (calendar name, calendar type id, ierror)

Argument Intent Type Definition

calendar name Out Character(len=132) name of calendar used
calendar type id Out Integer ID of calendar used
ierror Out Integer returned error code

Table 4.26:prism get calendartype arguments

This routine returns the name and the ID of the calendar used in thePSMILe. Currently, the only calendar
supported is the ‘Proleptic Gregorian Calendar’ (i.e. a Gregorian calendar4 extended to dates before 15
Oct 1582) and its ID is 1 (i.e. the PRISM integer name parameterPRISM Cal Gregorian = 1 , see
prism/src/lib/common oa4/include/prism.inc). Simple calendars with 360 and 365 days
are implemented but not directly available to the user. In a future version, the calendar type should be
chosen and specified by the user in an XML configuration file, read in from this XML file by the Driver,
and transfered to thePSMILe.

4.8.2 prism calc newdate

prism calc newdate (date, date incr, ierror)

Argument Intent Type Definition

date InOut Type(PRISM Time Struct) In and Out date
date incr In Integer, Real or Double Increment in seconds to add to the

date
ierror Out Integer returned error code

Table 4.27:prism calc newdate arguments

This routine adds a time increment ofdate incr seconds to thedate given as In argument and returns
the result in thedate as Out argument. The time increment may be negative. For the date structure
PRISM Time Struct , see/prism/src/lib/common oa4/src/prism constants.F90 .

4.8.3 prism error

prism error (ierror, error message)

Argument Intent Type Definition

ierror In Integer an error code returned by aPSMILe routine
error message Out character(len=*) corresponding error string

Table 4.28:prism error arguments

This routine returns the string of the error messageerror message corresponding to the error code
ierror returned by otherPSMILe routines. In general, 0 is returned as error code if the routine com-
pleted without error; a positive error code means a severe problem was encountered.

4The Gregorian calendar considers a leap year every year which is multiple of 4 but not multiple of 100, and every year which
is a multiple of 400.

32 CHAPTER 4. OASIS4 MODEL INTERFACE LIBRARY, PSMILE

4.8.4 prism version

prism version()

This routine prints a message giving the version of thePSMILe library currently used.

4.8.5 prism get real kind type

prism get real kind type (kindr, type, ierror)

Argument Intent Type Definition

kindr In Integer kind type parameter of REAL variables
type Out Integer PRISM datatype corresponding tokindr
ierror Out Integer returned error code

Table 4.29:prism get real kind type arguments

This routine returns intype the PRISM datatype which corresponds to the kind type parameterkindr .
type can be either PRISM Real = 4 , or PRISM Double Precision = 5 (see
prism/src/lib/common oa4/include/prism.inc).

4.8.6 prism remove mask

prism remove mask (mask id, ierror)

Argument Intent Type Definition

mask id In Integer mask ID as returned byprism set mask
ierror Out Integer returned error code

Table 4.30:prism removemask arguments

The routine removes the mask information linked the mask IDmask id given as argument.

Chapter 5

OASIS4 description and configuration
XML files

This chapter details the content of the XML description and specification files used with OASIS4.

• The XML description files are used to:

– describe each application: the “Application Description” (AD)

– describe the relations a component model of an application is able to establish with the rest
of the coupled model through inputs and outputs: the “Potential Model Input and Output
Description” (PMIOD)

The description XML files, i.e. the ADs and PMIODs, should be created by the component model
developer to provide information about the general characteristics and the potential coupling inter-
face of its code, but they are not used by the OASIS4 coupler.

• The XML specification files are used to:

– specify the general characteristics of a coupled model run: the “Specific Coupling Configura-
tion” (SCC)

– specify the relations the component model will establish with the rest of the coupled model
through inputs and outputs for a specific run: the Specific Model Input and Output Configura-
tion (SMIOC).

The specification XML files, i.e. the SCC and the SMIOCs, must be created by the coupled model
user, i.e. the person that builds the coupled model. They provide specifications about the process
management and the coupling and I/O exchanges of one particular coupled model and are used by
the OASIS4 coupler.

A Graphical User Interface (GUI) is currently being developed to facilitate the creation of those files.
Based on the ADs and PMIODs description files, the GUI will help the user to create the SCC and SMIOCs
specification files.

5.1 Introduction to XML concepts

Extensible Markup Language (XML) is a simple, very flexible text format. Originally designed to meet
the challenges of large-scale electronic publishing, XML is also playing an increasingly important role in
the exchange of a wide variety of data on the Web and elsewhere. An XML document is simply a file
which follows the XML format.

The purpose of a DTD or a Schema is to define the legal building blocks of an XML document. The
AD, SCC, PMIOD and SMIOC XML documents must follows the Schemas filesad.xsd , scc.xsd ,

33

34 CHAPTER 5. OASIS4 DESCRIPTION AND CONFIGURATION XML FILES

pmiod.xsd andsmioc.xsd respectively, available in the directory/prism/src/mod/oasis4/util/
xmlfiles .

The xmllint command with the following options can be used to validate an XML filefile.xml
against a Schema filefile.xsd :

xmllint --noout --valid --postvalid --schema file.xsd file.xml

The building blocks of XML documents are Elements, Tags, and Attributes.

• Elements

Elements are the main building blocks of XML documents.

Examples of XML elements inpmiod.xsd are prismcomponent or code . Elements can
contain text, other elements, or be empty.

The values ofminOccurs andmaxOccurs for an element in the Schema file indicate how many
times this element must occur in the corresponding XML file; ifminOccurs andmaxOccurs are
not specified, the element must appear once.

• Tags

Tags are used to markup elements.

In the XML file, a starting tag like<elementname> mark up the beginning of an element, and an
ending tag like</elementname> mark up the end of an element.

Example:<laboratory>Meteo-France</laboratory>

An empty element will appear as<elementname />.

• Attributes

Attributes provide extra information about elements and are placed inside the start tag of an ele-
ment. As indicated in the Schema file, an attribute may be “required” (use=’required’) or “optional”
(use=’optional’).

Example:<grid local name=”AT312D”>

The name of the element is “grid”. The name of the attribute is “localname”. The value of the
attribute is “AT312D”.

5.2 The Application Description (AD)

The Application Description (AD) describes the general characteristics of one application. There is one
AD per application, i.e. per code which when compiled forms one executable. An application may contain
one or more component model. This description XML file should be created by the application developer
to provide information about the application general characteristics1 but it is not used by the OASIS4
coupler.

The AD Schema is given in/prism/src/mod/oasis4/util/xmlfiles/ad.xsd . The AD
file name must be<applicationlocal name> ad.xml where<applicationlocal name> is the application
name.

The AD contains the element ‘application’ which is composed of (see thead.xsd):

• the application name: attribute ‘localname’, which should match argumentappl nameof PSMILe
call prism init (see section 4.1.1);

• a description of the application: attribute ‘longname’;

• the version of the OASIS4 Schema file: attribute ‘oasis4version’;

1On the longer term, in order to avoid duplication of information, it is foreseen to develop a tool to extract automatically all
AD information which is already in the code (e.g. the component names given argumentcomp name of prism init comp
calls).

5.3. THE POTENTIAL MODEL INPUT AND OUTPUT DESCRIPTION (PMIOD) 35

• the mode into which the application may be started: attribute ‘startmode’: ‘spawn’, ‘notspawn’ or
‘notspawnor spawn’ (see section 3.1);

• the mode into which the application may run: attribute ‘couplingmode’: ‘coupled’, ‘standalone’,
or ‘coupledor standalone’;

• the arguments with which the application may be launched: element ‘argument’;

• the total number of processes the application can run on: element ‘nbrprocs’;

• the platforms on which the application has run: element ‘platform’;

• the list of components included in the application: element ‘component’; for each component:

– the component name: attribute ‘localname’, which should match the argumentcomp name
of PSMILe call prism init comp (see section 4.1.2);

– a description of the component: attribute ‘longname’;

– the simulated part of the climate system: attribute ‘simulated’: eitherocean , sea ice ,
ocean biogeochemistry , atmosphere , atmospheric chemistry , or land ; if
an AD contains more than one component simulating the same part of the climate system, the
user will have in the SCC (see below) to choose among these components;

– whether or not this component is always active in the application: attribute ‘default’, either
true or false);

– the number of processes on which the component can run (element ‘nbrprocs’).

5.3 The Potential Model Input and Output Description (PMIOD)

The Potential Model Input and Output Description (PMIOD) describes the relations a component model
is potentially able to establish with the rest of the coupled model through inputs and outputs. There should
be one PMIOD per component model, written by the component developer2 to describe its component
potential coupling interface, but the PMIOD files are not used by the OASIS4 coupler.

The PMIOD Schema is given/prism/src/mod/oasis4/util/xmlfiles/pmiod.xsd . The
PMIOD file name should be<applicationlocal name> <componentlocal name> pmiod.xml where
<applicationlocal name> is the application name and<componentlocal name> is the component name.
Examples of PMIOD xml files for the toy coupled model TOYOA4 can be found in
prism/util/running/toyoa4/input .

The PMIOD contains 3 types of information:

• general characteristics of the component

• information on the grids

• information on the coupling/IO fields, also called ‘transient variables’

5.3.1 Component model general characteristics

This type of information gives an overview of the component model:

• the component name: attribute ‘localname’ of element ’prismcomponent’, which should match the
2nd argument ofPSMILe call prism init comp(see section 4.1.2);

• a short general description of the component model: attribute ‘longname’;

• the version of the OASIS4 Schema file: attribute ‘oasis4version’;

2On the longer term, in order to avoid duplication of information, it is foreseen to develop a tool to extract automatically all
PMIOD information which is already in the code (e.g. the component name given argumentcomp nameof prism init comp
calls)

36 CHAPTER 5. OASIS4 DESCRIPTION AND CONFIGURATION XML FILES

• the simulated part of the climate system: attribute ‘simulated’, eitherocean , sea ice ,
ocean biogeochemistry , atmosphere , atmospheric chemistry , or land ;

• the name of the laboratory developing the component: element ‘laboratory’ in element ‘code’;

• the contact for additional information: element ‘contact’ in element ‘code’;

• the reference in the literature: element ‘documentation’ in element ‘code’;

5.3.2 Grid families and grids

This part contains information on the grids used by the component model. There might one or more grid
families per component; for each grid family (element ‘gridfamily’), there may be one or more grids
(elements ‘grid’), each grid corresponding in fact to one resolution. All grids of all families shoule be
described by the component developer in the PMIOD.

Each grid (element ‘grid’) is described by:

• the grid name: attribute ‘localname’, which should match the 2nd argumentgrid nameof PSMILe
call prism def grid (see section 4.3.1)

• for the physical domain covered by the grid: element ‘physicalspace’:

– a general description: attribute ‘longname’

– for the longitude dimension (element ‘longitudedimension’): the domain minimum and max-
imum and the units (elements ‘validmin’, ‘valid max’, and attribute ‘units’: for now, only
degrees east supported, see also section 4.3.2)

– for the latitude dimension (element ‘latitudedimension’): the domain minimum and maxi-
mum and the units (elements ‘validmin’, ‘valid max’, and attribute ‘units’: for now, only
degrees north supported, see also section 4.3.2)

– for the vertical dimension (element ‘verticaldimension’):

∗ the domain minimum and maximum (element ‘validmin’ and ‘valid max’)

∗ the units (attribute ‘units’: eithermeters , bar , millibar , decibar , atmosphere ,
pascal , hPa, dimensionless , see also section 4.3.2)

∗ the direction in which the coordinate values are increasing (attribute ‘positive’, eitherup
or down)

• for the sampled domain covered by the grid (element ‘sampledspace’):

– whether or not the grid covers the pole: attribute ‘polecovered’, eithertrue or false

– the grid mesh structure type: attribute ‘gridtype’, which should match argumentgrid type
of prism def grid (see section 4.3.1), either:

∗ PRISM gridless

∗ PRISM reglonlatvrt

∗ PRISM gaussreduced regvrt

∗ PRISM irrlonlat regvrt ,

∗ PRISM unstructlonlat regvrt

∗ PRISM unstuctlonlatvrt

– for each global index dimension (elements ‘indexingdimension’):

∗ the index name: attribute ‘localname’

∗ whether or not the grid is periodic is this dimension: attribute ‘periodic’ eithertrue or
false

∗ the extent in this dimension: element ‘extent’

∗ the number of overlapping grid points in this index dimension: element ‘nbroverlap’ (=0
if none)

5.3. THE POTENTIAL MODEL INPUT AND OUTPUT DESCRIPTION (PMIOD) 37

• the computational space covered by the grid: element ‘computespace’. In thePSMILe , a grid is
defined by its volume elements which discretize the domain covered. In these volume elements, a
number of sets of points, on which the variables are calculated, can be placed. For vectors, three
sets of points can be placed so that the vector components need not to be at the same location.
Element ‘computespace’ gives the user a description of the (vector) sets of points, declared in the
component code:

– elements ‘points’: the sets of points defined on the grid, declared in the code withPSMILe
call prism set points (see section 4.3.2); for each set:

∗ a local name which should match 2nd argument in prismsetpoint: attribute ‘localname’

∗ a description of the set of points: attribute ‘longname’

– elements ‘vector’: the vector sets, declared in the code withPSMILe callprism set vector
(see section 4.3.8), which associates, for a vector variable, the 3 pre-defined sets of points on
which the vector components are located; for each vector set:

∗ a local name which should match 2nd argument inPSMILe call prism set vector
(attribute ‘localname’)

∗ a description of the vector (attribute ‘longname’)

∗ the local name of the set of points on which the first, second, and third components are
located (attribute ‘firstcomppoints local name’, ‘secondcomppoints local name’, and
‘thirdcomp points local name’ respectively)

5.3.3 Coupling/IO fields (transient variables)

Each coupling/IO field possibly received or provided by the component model from/to its external envi-
ronment (another model or a disk file) throughprism get or prism put call should be described in
the component PMIOD by one element ‘transient’ which has the following attributes and sub-elements:

• attribute ’localname’: the field name (which should match 2nd argument in the corresponding
PSMILe call prism def var , see section 4.4.1);

• attribute ‘longname’: gives a general description of the variable;

• element ‘transientstandardname’: the standard variable names following the CF convention (if it
exist). This uniquely identifies the nature of the coupling/IO field. In case of vector, three elements
need to be specified (one for each vector component).

• element ‘physics’: a description of the coupling/IO field physical constraints:

– attribute ‘transienttype’: the coupling/IO field physical type (either ‘single’ or ‘vector’)

– element ‘physicalunits’: the coupling/IO field units

– element ‘validmin’: its physically acceptable minimum value

– element ‘validmax’: its physically acceptable maximum value

• element ‘numeric’, which attribute ‘datatype’ gives the coupling/IO field numeric type: either
xs:real , xs:double , or xs:integer

• element ‘computation’, which attributes and sub-elements give some information on the coupling/IO
field computational characteristics:

– attribute ‘maks’, which tells whether or not a mask is associated to the coupling/IO field (either
true or false)

– attribute ‘conditionalcomputation’, which, if present, indicates under which condition the
coupling/IO field is effectively sent and/or received

– attribute ‘methodtype’, which, if present, indicates what the coupling/IO field value repre-
sents on the grid cell, eithermean, max, min , median , variance

38 CHAPTER 5. OASIS4 DESCRIPTION AND CONFIGURATION XML FILES

– element ‘associatedgridfamily’, which attribute ‘localname’ must be the same than the one
of the grid family associated to the coupling/IO field

– element ‘associatedcomputespace’, which attribute ‘localname’ must be the same than the
one of the computational space associated to the coupling/IO field (i.e. the attribute ‘lo-
cal name’ of either the associated set of points -element ‘points’-, or the associated vector
sets - element ‘vector’)

• element ‘intent’, which describes if the coupling/IO field may be exported or imported, or both. The
sub-elements of ‘intent’ are:

– element ‘output’: if the coupling field can be exported throughPSMILe prism put call
(see section 4.6.1), this element should contain the attribute ‘transiout name’ (a symbolic
output name) and the element ‘minimalperiod’, which is the period at which theprism put
is called in the code (to define this period the developer may specify a number of seconds,
minutes, hours, days, months, and/or years, with respectively the sub-elements ‘nbrsecs’,
‘nbr mins’, ‘nbr hours’, ‘nbr days’, ‘nbr months’, ‘nbryears’).

– element ‘input’: if the coupling/IO field can be imported through aprism get call (see
section 4.6.2), this element should contain the element ‘minimalperiod’, which is the period
at which theprism get is called in the code.

• element ‘transientdependency’: if the developer wants to indicate a dependency between the cou-
pling/IO field and another coupling/IO field from the same component, he has to define an element
‘transientdependency’ and to specify this dependency in the attribute ‘depvariable’. For example,
field A is a transientdependency of field B if field A is used in the calculation of field B. This
information may be needed to prevent deadlocks.

5.4 The Specific Coupling Configuration (SCC)

The Specific Coupling Configuration (SCC) contains the general characteristics and process management
information of one coupled model simulation. There must be one SCC per coupled model (or per stand-
alone application), namedscc.xml , and written by the coupled model user.

The SCC Schema is given in/prism/src/mod/oasis4/util/xmlfiles/scc.xsd .

After the call toprism init in the application code, some of the SCC information is accessible directly
by the model, with specificPSMILe calls (see section 4.2). In many cases, coherence with the compiling
and running environment and scripts has to be ensured.

The SCC contains:

• the version of the OASIS4 Schema file: attribute ‘oasis4version’ of element ‘scc’

• some general information on the experiment defined by the user (element ‘experiment’):

– the experiment name (attribute ‘localname’);

– a description of the experiment (attribute ‘longname’);

– the mode into which all applications of the coupled model will be started (attribute ‘startmode’:
eitherspawn or not spawn , see section 3.1); this user’s choice, restricted by the possibili-
ties given in the ADs, determines the way the applications should be started in the run script.

– the number of processes used for the OASIS4 Driver/Transformer (element ‘nbrprocs’ of
element ‘driver’)

– the start date of the experiment (element ‘startdate’)

– the end date of the experiment (element ‘enddate’)

• some general information on the current run, which therefore must be updated for each run of the
experiment (element ‘run’):

5.5. THE SPECIFIC MODEL INPUT AND OUTPUT CONFIGURATION (SMIOC) 39

– the start date of the run (element ‘startdate’); the start date should correspond to the lower
bound of the time interval which is represented by the first time step of the run.

– the end date of the run (element ‘enddate’); the end date should correspond to the upper bound
of the time interval which is represented by the last time step of the run. Note that the end date
of the current run has to be used as start date for the subsequent run.

• the list of applications chosen by the user (elements ‘application’). For each chosen application:

– the application name (as given in the corresponding AD) (attribute ‘localname’) which must
match argumentappl name of PSMILe call prism init ;

– the application executable name, defined by the compiling environment (attribute ‘executablename’)
(used only inspawn mode as argument of theMPI CommSpawn Multiple).

– whether or not application stdout is redirect or not (user’s choice) (attribute ‘redirect’, either
true or false)

– a list of launching arguments (chosen by the user in the list given in the corresponding AD)
(elements ‘argument’);

– a list of hosts (elements ‘host’); for each host:

∗ the host name (attribute ‘localname’) (used only inspawn mode as argument of the
MPI CommSpawn Multiple).

∗ the number of processes to run this host (element ‘nbrprocs’) (used in thenot spawn
method to split the global communicator; for thespawn method, used as argument in
MPI CommSpawn Multiple).

– the list of components activated (elements ‘component’, chosen by the user in the list given in
the corresponding AD); for each component:

∗ the component name (as given in the corresponding AD) (attribute ‘localname’), which
must match the argumentcomp nameof PSMILe call prism init comp (see 4.1.2);

∗ the lists of ranks in the total number of processes for the application (elements ‘ranks’):
The ranks are the numbers of the application processes (starting with zero) used to run the
component model. They are given as lists of 3 numbers giving, in each list, a minimum
value, a maximum value, and an increment value. For example, if processes numbered 0
to 31 are used to run a component model, this can be describe with one rank list (0, 31,
1); if processes 0 to 2 and 5 to 7 are used, this can be described with two rank lists (0, 2,
1) and (5, 7, 1).

5.5 The Specific Model Input and Output Configuration (SMIOC)

The Specific Model Input and Output Configuration (SMIOC) specifies the relations the component model
will establish at run time with the rest of the coupled model through inputs and outputs for a specific run. It
must be generated by the user for each component model based on the corresponding PMIOD information.

The SMIOC Schema is given in/prism/src/mod/oasis4/util/xmlfiles/smioc.xsd . The
SMIOC file name must be<applicationlocal name> <componentlocal name> smioc.xml where
<applicationlocal name> is the application ‘localname attribute and<componentlocal name> is the
component ‘localname’ attribute in the scc.xml file. Examples of SMIOC xml files for the toy coupled
model TOYOA4 can be found inprism/util/running/toyoa4/input .

The SMIOC may contains 3 types of information detailed in the next paragraphs:

• general characteristics of the component, as described in the corresponding PMIOD

• information on the grids

• information on the coupling/IO fields, also called ‘transient variables’

40 CHAPTER 5. OASIS4 DESCRIPTION AND CONFIGURATION XML FILES

As stated below, the description information of the corresponding PMIOD may be repeated in the SMIOC.
Part of this description information is used to define attributes of the I/O NetCDF files but is not mandatory
for the proper execution of the coupled modelper se; if it is not specified in the SMIOC, it will just be
missing in the I/O files. In the paragraphs below, it is detailed which information is mandatory.

5.5.1 Component model general characteristics

The SMIOC may repeat the description information provided about the component model general char-
acteristics in the corresponding PMIOD. For more detail, see section 5.3.1. However, the only mandatory
information about the component model general characteristics in the SMIOC is the component name, i.e.
the attribute ‘localname’ of element ’prismcomponent’, which must match the 2nd argument ofPSMILe
call prism init comp(see section 4.1.2), and the attribute ‘oasis4version’ of element ’prismcompo-
nent’.

5.5.2 Grid families and grids

This part contains information on the grids effectively used during the run by the component model, based
on the description done in the corresponding PMIOD file.

There might one or more grid families per component as described in the corresponding PMIOD. But for
each grid family (element ‘gridfamily’), only one grid, i.e. in fact one resolution, can now be specified in
the SMIOC.

For each grid family, the chosen grid (element ‘grid’) can be described in the SMIOC as in the PMIOD
(see section 5.3.2). However, the only mandatory grid information in the SMIOC is:

• the grid name: attribute ‘localname’, which must match the 2nd argumentgrid nameof PSMILe
call prism def grid (see section 4.3.1).

• for the sampled domain covered by the grid (element ‘sampledspace’):

– whether or not the grid covers the pole: attribute ‘polecovered’, eithertrue or false

– the grid mesh structure type: attribute ‘gridtype’, which must match argumentgrid type
of prism def grid (see section 4.3.1), either:

∗ PRISM gridless

∗ PRISM reglonlatvrt

∗ PRISM gaussreduced regvrt

∗ PRISM irrlonlat regvrt ,

∗ PRISM unstructlonlat regvrt

∗ PRISM unstuctlonlatvrt

– for each global index dimension (elements ‘indexingdimension’):

∗ the index name: attribute ‘localname’

∗ whether or not the grid is periodic is this dimension: attribute ‘periodic’ eithertrue or
false (mandatory only if the grid is periodic)

5.5.3 Coupling/IO fields (transient variables)

Each coupling/IO field effectively received or provided by the component model from/to its external en-
vironment (another model or a disk file) throughprism get or prism put call in the component
code (see sections 4.6.1 and 4.6.2) must be specified by one element ‘transient’ which has the following
attributes and sub-elements:

• attribute ‘localname’: the field name, which must match 2nd argument in the correspondingPSMILe
call prism def var (see sections 4.4.1); (mandatory);

5.5. THE SPECIFIC MODEL INPUT AND OUTPUT CONFIGURATION (SMIOC) 41

• attribute ‘longname’: gives a general description of the variable; (optional)

• element ‘transientstandardname’: one or more PRISM standard names following the CF conven-
tion (if they exist); see section 5.3.3 for details; (mandatory)

• element ‘physics’: a description of the coupling/IO field physical constraints; see section 5.3.3 for
details; (optional)

• element ‘numeric’, which attribute ‘datatype’ gives the coupling/IO field numeric type (either
xs:real , xs:double , or xs:integer); (mandatory)

• element ‘computation’, which attributes and sub-elements give some information on the coupling/IO
field computational characteristics; see section 5.3.3 for details; (optional)

• element ‘intent’, which describes if the coupling/IO field will be exported or imported, or both
(mandatory). This element contains in its sub-elements all coupling and I/O information (source
and/or target, frequency, transformations, interpolation, etc.). The sub-elements of ‘intent’ are:

– element ‘output’: If the coupling/IO field is exported through aprism put , it can be ef-
fectively be sent to none, one, or many targets; each target must be described in one element
‘ouput’. The element ‘output’ is described in more details in section 5.5.4.

– element ‘input’: If the coupling/IO field is imported through aprism get , this import must
be described in one element ‘input’. The element ‘input’ is described in more details in section
5.5.5.

• element ‘transientdependency’: optional. See section 5.3.3 for details.

5.5.4 The ‘output’ element

If the coupling/IO field is exported through aprism put in the component code, it can be effectively be
sent to none, one, or many targets, each target being described in one element ‘ouput’. A more detailed
description of element ‘output’, its attributes and sub-elements is given here.

1. attribute ‘transiout name’: a symbolic name defined by the user for that specific ‘output’ element.

2. element ‘minimalperiod’: The period at which theprism put is called in the code; this element
should be specified as in the corresponding PMIOD file, if it exists. To define this period the devel-
oper may specify a number of seconds, minutes, hours, days, months, and/or years, with respectively
the sub-elements ‘nbrsecs’, ‘nbrmins’, ‘nbr hours’, ‘nbr days’, ‘nbr months’, ‘nbryears’.

3. element ‘exchangedate’: The dates at which the coupling or I/O will effectively be performed. To
express these dates, the user has to specify one of the following sub-elements:

• element ‘period’: The coupling or I/O is performed with a fixed period. To define this period,
the user may specify a number of seconds, minutes, hours, days, months, and/or years, with
respectively the sub-elements ‘second’, ‘minute’, ‘hours’, ‘day’, ‘month’, ‘year’.

4. element ‘corresptransi in name’: The symbolic name of the corresponding input coupling/IO field
origin (attribute ‘transiin name’ of element ‘origin’ of element ‘input’) in the target component or
target file. This defines an exchange between a source and a target component or file. Coherence has
to be ensured, i.e. the value of the current output ‘transiout name’ attribute (see above) has to be
specified in the ‘corresptransiout name’ element of the corresponding input coupling field origin
(see also section 5.5.5). When it will be available, this coherence will be automatically ensured by
the GUI.

5. element ‘file’ or element ‘componentname’: The target file description (I/O) or the target com-
ponent ‘localname’ attribute (coupling). The ‘file’ element is described in more detail in section
5.5.7.

42 CHAPTER 5. OASIS4 DESCRIPTION AND CONFIGURATION XML FILES

6. element ‘lag’: The number ofprism put periods3 to add to the output coupling fieldprism put
date and datebounds to match the corresponding input coupling fieldprism get date in the target
component (see also 4.6.4).

7. element ‘sourcetransformation’: The transformations performed on the output coupling/IO field in
the source componentPSMILe .

• element ‘sourcetime operation’: for each grid point, the output coupling/IO field can be av-
eraged (taverage) or accumulated (accumul) over the last coupling period by the source
PSMILe and the result is transfered.

• element ‘statistics’: different statistics (minimum, maximum, integral) are calculated for the
field on the masked points, and/or on the not masked points, and/or on all points of the output
coupling/IO field, if respectively the sub-elements ‘maskedpoints’, and/or ‘notmaskedpoints’,
and/or ‘all points’ are specified. This is done below theprism put by the sourcePSMILe
(after the time operations described in element ‘sourcetime operation’ if any). These statitis-
tics are printed to thePSMILe log file for information only; they do not transform the output
coupling/IO field.

• element ‘sourcelocal transformation’: the following local transformations may be performed
on the output coupling/IO field by the sourcePSMILe :

– element ‘scattering’: the ‘scattering’ should be specified by the developer in the PMIOD
and should not be changed by the user in the SMIOC. It is performed on an output cou-
pling/IO field below theprism put by the sourcePSMILe . It is required when grid
information transfered to thePSMILe includes the masked points and when the array
transfered to theprism put API is a vector gathering only the non-masked points.

– element ‘addscalar’: The scalar specified in this element is added to each grid point
coupling/IO field value.

– element ‘multscalar’: Each grid point coupling/IO field value is multiplied by the scalar
specified in this element.

8. element ‘debugmode’: eithertrue or false ; if it is true , the output coupling/IO field is auto-
matically also written to a file below theprism put .

5.5.5 The ‘input’ element

If the coupling/IO field is imported through aprism get in the component code, the user describes
one source for that field in the SMIOC. A more detailed description of element ‘input’, its attributes and
sub-elements is given here.

1. attribute ‘requiredbut changeable’: if the developer indicates in the PMIOD that this attribute is
true , the user must define at least one ‘input’ element in the SMIOC; if it isfalse , then an
‘input’ with no ‘origin’ sub-elements may appear in the SMIOC.

2. element ‘minimalperiod’: The period at which theprism get is called in the code. (See element
‘minimal period’ of element ‘output’ in section 5.5.4.)

3. element ‘exchangedate’: The dates at which the coupling or I/O will effectively be performed (see
‘exchangedate’ in ‘output’ in section 5.5.4).

4. element ‘origin’: In the current OASIS4 version, an input coupling/IO field may come only from
one origin being described by an element ‘origin’ which contains the following attributes and sub-
elements:

• attribute ‘transiin name’: a symbolic name defined for that specific ‘origin’ element.

3A prism put period is the time between theprism put datebounds; e.g. for a lag of 1, the time added to the
prism put date and datebounds arguments would be once the time difference between the associated datebounds.

5.5. THE SPECIFIC MODEL INPUT AND OUTPUT CONFIGURATION (SMIOC) 43

• element ‘corresptransiout name’: The symbolic name of the corresponding output cou-
pling/IO field (attribute ‘transiout name’ of element ‘output’) in the source component or
source file. This defines an exchange between a source and a target component or file. Co-
herence has to be ensured, i.e. the value of the current input ‘transiin name’ attribute has
to be specified in the ‘correstransi in name’ element of the corresponding output coupling
field (see also section 5.5.4). When it will be available, this coherence will be automatically
ensured by the GUI.

• element ‘file’ or ‘componentname’: The source file description (I/O) or the source component
‘local name’ attribute (coupling). The ‘file’ element is described in more detail in section
5.5.7.

• element ‘middletransformation’: The transformations which link the source and the target.

– element ‘interpolation’: The interpolation to be performed on the output coupling field to
express it on the target model grid. This element is described in more detail in section
5.5.6.

5. element ‘targettransformation’: The transformations performed on the input coupling/IO field in
the target componentPSMILe .

• element ‘targetlocal transformation’: The local transformations performed on the input cou-
pling/IO field.

– element ‘gathering’: The ‘gathering’ should specified by the developer in the PMIOD
and should be kept as is in the SMIOC. It is performed on an input coupling/IO field
below theprism get by the targetPSMILe . It is required when the grid information
transfered to thePSMILe covers the whole grid (masked points included), and when
the array transfered throughprism get API is a vector gathering only the non-masked
points.

– element ‘addscalar’: The scalar specified in this element is added to each grid point
coupling/IO field value.

– element ‘multscalar’: Each grid point coupling/IO field value is multiplied by the scalar
specified in this element.

• element ‘targettime operation’: Target time interpolation is supported below theprism get
only for IO data4. The types of time interpolation are the nearest neighbour ‘timenneighbour’
and linear time interpolation between the two closest timestamps ‘timelinear’ in the input file.

• element ‘statistics’: see section 5.5.4.

6. element ‘debugmode’: eithertrue or false ; if it is true , the input coupling/IO field is auto-
matically written to a file below theprism get .

5.5.6 The element ‘interpolation’

The element ‘interpolation’ is a sub-element of ‘middletransformation’, which is a sub-element of ‘ori-
gin’, which is a sub-element of ‘input’. The interpolation is needed to express the coupling field on the
target model grid5.

As all coupling arrays are given on a 3D grid, the user has to choose among the following:

4This feature is not essential for coupling data as eachprism put has a date and datebounds as arguments. Therefore, a
prism put and aprism get will be matched if theprism get date falls into the datebounds of theprism put . Allowing
for time interpolation, e.g. allowing aprism get to match with an averaged value of the twoprism put nearest neighbour
in time, could lead to deadlocks as the model performing theprism get would be blocked until the twoprism put nearest
neighbour in time are performed. We rely only the datebounds to matchprism put andprism get having non matching
dates.

5In the current OASIS4 version, interpolation is available only for coupling fields. In a future version, interpolation might
also be possible for I/O fields read/written from/to a file.

44 CHAPTER 5. OASIS4 DESCRIPTION AND CONFIGURATION XML FILES

• ‘interp3D’: A full 3D interpolation.

• ‘(interp2D, interp1D)’: The same 2D interpolation for all vertical levels followed by a 1D inter-
polation in the vertical6 This type of interpolation can be used for all grids which vertical dimen-
sion can be expressed as z(k), i.e. for i.e. for source grid typesPRISM reglonlatvrt , or
PRISM irrlonlat regvrt . The mask may vary with depth. Currently the combination of 2D
and 1D interpolations that are supported arebilinear andnone , nneighbour2D andnone
(see below).

The elements ‘interp3D’, ‘interp2D’, ‘interp1D’, are separately described here after:

1. element ‘interp3D’: For 3D interpolation, the user has to choose among the following methods:

• element ‘nneighbour3D’: A 3D nearest neighbour algorithm; the parameters are:

– element ‘parasearch’: currenlty, onlylocal is available (a local but less expensive
neighborhood search).

– element ‘nbrneighbours’: the number of neighbours.

– element ‘usedmasked’: eithertrue (all points are considered in thePSMILe neigh-
bourhood search and the Transformer detects masked points), orfalse (the nearest
neighbours are chosen by thePSMILe among non-masked points only).

• element ‘trilinear’: A trilinear algorithm; the parameters are:

– element ‘parasearch’: see element ‘nneighbour3D’ above.

– element ‘if masked’: eithernovalue , tneighbour , or nneighbour .

∗ novalue : if some of the 8 trilinear neighbours are masked,PRISM undef value
is given to that target point;

∗ tneighbour : if some of the 8 trilinear neighbours are masked, the non-masked
points among those 8 points are used for calculating a weighted average; if the 8
trilinear neighbours are masked,PRISM undef value is given to that target point;

∗ nneighbour : if some of the 8 trilinear neighbours are masked, the non-masked
points among those 8 points are used for calculating a weighted average; if the 8
trilinear neighbours are masked, the non-masked nearest neighbour is used.

2. element ‘interp2D’: For 2D interpolation, the following methods can be chosen:

• element ‘nneighbour2D’: A 2D nearest neighbour algorithm; the parameters are:

– elements ‘parasearch’, ‘nbrneighbours’, ‘usedmasked’: see element ‘nneighbour3D’
above.

• element ‘bilinear’: A bilinear algorithm; for the parameters are:

– element ‘parasearch’: see element ‘nneighbour3D’ above.

– element ‘if masked’: see element ‘trilinear’ above.

• element ‘bicubic’: A bicubic algorithm, the parameters are:

– element ‘parasearch’, ‘if masked’, ‘gradientvarname’: see above.

– element ‘bicubicmethod’: The bicubic method: eithergradient (the four enclosing
source neighbour values and gradient values are used), orsixteen (the sixteen enclos-
ing source neighbour values are used).

3. element ‘interp1D’ For 1D interpolations, the following methods can be chosen:

• element ‘none’:

Interpolation method that can be chosen for dimension with extent of 1. For example, to
interpolate a field of Sea Surface Temperature dimensioned (i,j,k) with extent of k being 1,

6Currently, only thenone interpolation, i.e. no interpolation, is available in the vertical.

5.5. THE SPECIFIC MODEL INPUT AND OUTPUT CONFIGURATION (SMIOC) 45

the interpolation type can be ‘(interp2D, interp1D)’ and ‘none’ should be chosen for the ‘in-
terp1D’.

5.5.7 The ‘file’ element

The ‘file element is composed of the following sub-elements:

• element ‘name’: a character string used to build the file name.

• element ‘suffix’: eithertrue or false . If ‘suffix’ is false (by default), the file name is com-
posed only of element ‘name’; if it is true, the file name is composed of element ‘name’ to which
the PRISM suffix for dates is added. When the file is opened for writing, the suffix will be
“ out.<job startdate>.nc”, where<job startdate> is the start date of the job. When the file is
opened for reading, the suffix should be “in.<start date>.nc”, where<start date> is the date of
the first time stamp in that file. When reading an input from a file, thePSMILe will automatically
match the requested date of the input with the appropiate file if it falls into the time interval covered
by that file. The<job startdate> and<start date> must be written according to the ISO format
yyyy-mm-ddTHH:MM:SS. The date/time string in the file name must have to format yyyy-mm-
ddTHH.MM.SS since the colon is already used in other context for file systems.

• element ‘format’: the format of the file; only NetCDF (mpp netcdf) supported for now.

• element ‘iomode’: eitheriosingle (by default) ordistributed . The modeiosingle
means that the whole file is written or read only by the master process;distributed means that
each process writes or reads its part of the field to a different partial file. Note that if the PSMILe
is linked against the parallel NetCDF library (7), theparallel mode will automatically be used;
in this case each process writes its part of the field to one parallel file (see also our remarks about
parallel NetCDF on page 24).

• element ‘packing’: packing mode , either1, 2, 4 or 8 (for NetCDF format only)

• element ‘scaling’: if present, the field read from the file are multiplied in thePSMILe by the
‘scaling’ value (1.0 by default) (for NetCDF format only)

• element ‘adding’: if present, the ‘adding’ value (0.0 by default) is added to the field read from the
file (for NetCDF format only)

• element ‘fill value’: on output, specifies the value given to grid points for which no meaningfull
value was calculated; on input, specifies the value given in the file to undefined or missing data.

46 CHAPTER 5. OASIS4 DESCRIPTION AND CONFIGURATION XML FILES

Chapter 6

Compiling and running OASIS4 and
TOYOA4

This chapter describe how to compile and run the OASIS4 coupler and its toy coupled model “TOYOA4”.

6.1 Introduction

The current OASIS4 version was successfully compiled and run on the following platforms:

• Intel(R) Xeon(TM) Infiniband Cluster

• Intel(R) Xeon(TM) Myrinet Cluster

• Linux PC DELL Precision 380 (Pentium 4, 3.2 Ghz)

• NEC SX6 and SX8

• SGI O3000/2000 server with MIPS 4 processors and IRIX64

• SGI IA64 Linux server Altix 3000 and Altix 4000 (under Redhat AS3/AS4 and SuSE, SLES9,
SLES 10)

• IBM Cluster 1600 (IBM Power4)

with the following Fortran Compilers:

• Intel Fortran Compiler Version 9.0 64Bit and 32Bit

• Portland Group Compiler Version 6.1-6 32-bit

• NEC SX Fortran Compiler.

• SGI MIPSPro compiling system 7.3 and 7.4

• Intel compiling systems ifort and icc 9.1, 9.0 and 8.1

• IBM XL Fortram Compiler

6.2 Compiling OASIS4 and its associated PSMIle library

Compiling can be done using either a top makefileTopMakefileOasis4 and platform dependent
header files (see section 6.2.1) or the PRISM Standard Compile Environment (SCE) (see section 6.2.2).
For both methods, the same low-level makefiles in each source directory are used. During compilation, a
new directory branch is created/prism/ arch, wherearch is the name of the compiling platform architec-
ture (e.g.Linux). After successful compilation, resulting executables are found in/prism/ arch/bin ,
libraries in/prism/ arch/lib and object and module files in/prism/ arch/build .

47

48 CHAPTER 6. COMPILING AND RUNNING OASIS4 AND TOYOA4

6.2.1 Compilation with TopMakefileOasis4

Compiling OASIS4 and TOYOA4 using the top makefileTopMakefileOasis4 can be done in di-
rectoryprism/src/mod/oasis4/util/make dir . TopMakefileOasis4 must be completed
with a header filemake. your platformspecific to the compiling platform used and specified in
prism/src/mod/oasis4/util/make dir/make.inc . One of the filesmake.pgi cerfacs ,
make.sx frontend or make.aix can by used as a template. The root of the prism tree can be any-
were and must be set in the variablePRISMHOMEin themake. your platformfile. The choice of MPI1
or MPI2 is also done in themake. your platformfile (seeCHANtherein).

The following commands are available:

• make -f TopMakefileOasis4

compiles OASIS4 librariescommonoa4, psmileoa4andmpp io and creates OASIS4 Driver/Transformer
executable oasis4.MPI[1/2].x ;

• make toyoa4 -f TopMakefileOasis4

compiles OASIS4 libraries as above and creates OASIS4 and TOYOA4 executables oasis4.MPI[1/2].x,
atmoa4.MPI[1/2].x, oceoa4.MPI[1/2].x and lanoa4.MPI[1/2].x ;

• make help -f TopMakefileOasis4

displays help information ;

• make clean -f TopMakefileOasis4 :

cleans OASIS4 and TOYOA4 compiled files, but not the libraries ;

• make realclean -f TopMakefileOasis4 :

cleans OASIS4 and TOYOA4 compiled files including libraries.

Log and error messages from compilation are saved in the files COMP.log and COMP.err in makedir.

For not compiling the mppio library, the variableLIBMPPmust be left undefined in the file make.your platform;
in this case, the top makefile activates the CPP keykey noIO and only empty mppio files are compiled.

6.2.2 Compilation using the PRISM Standard Compiling Environment (SCE)

The PRISM Standard Compiling Environment (SCE) has been adapted for OASIS4. These modifications
are available on CERFACS CVS serveralter and will also be included in the next official release of the
SCE on the new PRISM Subversion server at DKRZ in Hamburg.

Scripts and include files for the SCE are found in directory branchprism/util/compile (see figure
6.1). The toy model TOYOA4 using OASIS4 has been successfully compiled and run for the 3 plat-
forms currently included in the SCE available from CERFACS CVS server: the NEC SX6 at DKRZ
(nodename= ds , see/frames/include ds), the IBM power4 at ECMWF (nodename= hpc , see
/frames/include hpc) and the Linux PC at CERFACS (nodename= kullen , see
/frames/include kullen).

For compiling OASIS4 and TOYOA4 within SCE, the compilation scripts first have to be created by using
Create COMPcpl models.ksh in prism/util/compile/frames :

./Create COMPcpl models.ksh toyoa4 [expid] [nodename] [MPI1 or MPI2]

where the last 3 arguments are optional.

This will create 4 model compilation scripts:

- prism/src/mod/atmoa4/COMP atmoa4 expid.nodename
- prism/src/mod/lanoa4/COMP lanoa4 expid.nodename
- prism/src/mod/oasis4/COMP oasis4 expid.nodename
- prism/src/mod/oceoa4/COMP oceoa4 expid.nodename

6.2. COMPILING OASIS4 AND ITS ASSOCIATED PSMILE LIBRARY 49

and 1 library compilation script:

- prism/util/COMP libs. nodename.

Then each model compilation script has to be executed in its directory; the library compilation script is
executed automatically by each of the model compilation script.

During compilation, log and error messages are written into files with suffix .log and .err in the same
directory than the compilation script. Log and error messages after compilation of the libraries are found
in prism/util/COMP libs.log andCOMPlibs.err .

For compiling without mppio library, the variableuse key noIO has to be changed to “yes” in the
compile scripts for atmoa4, oceoa4 and lanoa4; in that case, only empty mppio files are compiled.

6.2.3 Some details on the compilation

• Other librairies needed

The following librairies (not provided with the OASIS4 sources) are required:

– Message Passing Interface, MPI1 (9) or MPI2 (5) (MPICH, SGI native MPI, NEC SX native
MPI, LAM-MPI and SCAMPI were successfully tested)

– NetCDF Version 3.4 or higher (4) or parallel NetCDF Version 1.0.0 (7) (see page 4.6)

– libxml Version 2.6.5 or higher (10)

• CPP keys

The following CPP keys can be activated:
(seeCPPDEFin prism/src/mod/oasis4/util/make dir/make.xxx files or
OSspecific nodename.h in prism/util/compile/frames/include nodename)

– PSMILE WITH IO: to make use of the IO capability ofPSMILe

– PRISM WITH MPI1: This options has to be chosen if the available MPI library supports
MPI1 standard, like mpich1.2.* or does not support the full MPI2 standard.

– PRISM WITH MPI2: When the available MPI2 library supports the complete MPI2 standard
this option may be chosen instead.

– PRISM LAM: if LAM-MPI library is used.

– DONT HAVE ERRORCODESIGNORE: As a workaround for some MPI2 implementations
that do not support the MPI parameter MPIERRORCODESIGNORE this key has to be acti-
vated. If at all, it is only needed in conjunction with PRISMWITH MPI2.

– SX: To achieve better performance on vector architecture this option should be set.

– VERBOSE: Useful for debugging purposes activation this key will cause the library and driver
routines to run in verbose mode. Since all output is immediately flushed to standard output
this will significantly decrease performance and is therefore not recommended for production
runs.

– DEBUG: Activating this option will cause the driver and library to write out additional out-
put for debugging purpose. This output is immediately flushed to standard output and will
therefore decrease performance.

– PRISM ASSERTION: Mainly used by the developers; the code encapsulated by this cpp key
will perform additional internal consistency checks and will provide additional information
for debugging.

6.2.4 Remarks and known problems

• LAM-MPI with the spawn approach

50 CHAPTER 6. COMPILING AND RUNNING OASIS4 AND TOYOA4

The usage ofMPI CommSpawn Multiple is the most portable way if MPI processes shall be
dynamically spawned on multiple hosts. Therefore, there is a reserved predefined key ”host” for
the info argument, which specifies the value of the host name, in the MPI2 standard. Nevertheless
this is currently not supported by LAM-MPI. Therefore, to use LAM-MPI, it is required to use the
CPP key PRISMLAM. In this case, LAM-MPIMPI CommSpawn Multiple fills the processors
according to the list given in thelam.config file used by the lamboot process (see example
in PRISM Cpl/examples/simple-mg), using always all processors on a given node. For
example, 1 Driver/Transformer process and 4 processes for the ocean and the atmosphere models
would be scheduled on three 4-CPU hosts like the following: the Driver/Transformer would be
on host 1, the ocean model would have 3 processes on host1 and 1 process on host 2, and the
atmosphere model would have 3 processes run on host 2 and 1 on host 3, which of course is not
optimal.

With MPI CommSpawn , LAM-MPI would be more more flexible regarding the spawning of pro-
cesses. For OASIS4 this is not an option sinceMPI CommSpawn Multiple is required for

– starting multiple binaries (not several applications); this may be required for an heterogenous
cluster;

– starting same binary with a multiple set of arguments;

– placing multiple binaries in the same MPICOMM WORLD. It is intended by PRISM to place
the MPI processes of an application into a MPICOMM WORLD which is different for each
application. In this case, the applications are not required to change the application internal
communicators.

Therefore, thespawn approach is not recommended with LAM-MPI. Thenot spawn approach
(see sections 3.1) should be prefered if possible.

• MPICH

Since MPI1 is not designed for 64 Bit architectures the default MPICH.1.2.* implementation will
not work on 64 Bit systems for OASIS4 andPSMILe. It could work on IA64 if there was no use
of functions with INTEGER arguments representing an address or a displacement as is the case in
OASIS4 (on IA64 architectures these integers must be 64 bits or “long” in C language; they are
“int” in MPICH) .

• Portland Group Compiler

The Portland Group Compiler Version 5.2 produces an internal compiler error for the main routine
of OASIS4.

For the Portland Group Compiler Version 6.0, the debug option (-g) must be used. No particular
option is needed for version 6.1 .

The Portland Group C compiler produces an error. Use of GNU C compiler gcc is recommended
instead (seeCCin prism/src/mod/oasis4/util/make dir/make.xxx files or
Sitespecific nodename.h in prism/util/compile/frames/include nodename)

• Intel Fortran Compiler

To successfully compile OASIS4 Intel Fortran Compiler version 8.0 or higher is required.

6.3 Running TOYOA4

Input files, data and script for running TOYOA4 are found in prism/util/running/toyoa4, see figure 6.1.
Note that TOYOA4 has not been adapted to PRISM Standard Running Environment.

NetCDF data files needed for running TOYOA4 are found in directory/data . The description and con-
figuration XML files are found in directory/input . Running can be done with a run scriptrun toyoa4
in directory /script which first will create the working directory/work ; all files and executables
needed for running are first copied into this working directory. The run scriptrun toyoa4 was run

6.3. RUNNING TOYOA4 51

compile running

frames

Append_dependencies

toyoa4

Create_COMP_cpl_models.ksh

prism

data

script

input

util

work

Append_dependencies.lib

include

include_node1

include_node2

Figure 6.1: Directories in prism/util

on three platforms, Linux at CERFAXS, SX6 at DKRZ and IBM power4 at ECMWF, using MPI1 (which
means that OASIS4 and 3 component model executables are started in the script). The scriptrun toyoa4
is an example of running TOYOA4 and can be modified by the user for his/her platform.

Figure 6.2 illustrates the coupling and I/O exchanges occuring between the 3 toy component models
atmoa4, oceoa4, and lanoa4.

Both atmoa4 and lanoa4 work on a T31 Gaussian grid, but their parallel partitioning is a function of their
number of processes which can be different. The third model, oceoa4, is not parallel and uses a a real
ocean model cartesian, stretched and rotated grid of 182X149 grid points.

All coupling and I/O fields are scalar fields. The model atmoa4 declares 1 input fieldSISUTESU,
and 4 output fieldCONSFTOT, COSENHFL, COWATFLU, ATWINSTSas is listed in its PMIOD file
atmoa4 atmos pmiod.xml . The model lanoa4 declares 2 input fieldsLAWATFLXandSOSENHFL,
and 1 output fieldLARUNOFFas is listed in its PMIOD filelanoa4 land pmiod.xml . The model
oceoa4 declares 4 input fieldsSONSHLDO, SOWAFLDO, SORUNOFFandOCWINSTS, and 1 output
field SOSSTSST.

At run-time, the OASIS4 Driver/Transformer and the PSMILe model interface linked to the component
models act according to the specifications written by the user in the configuration SMIOC XML files.

In the atmoa4 SMIOC fileatmoa4 atmos smioc.xml , it is specified thatATWINSTSwill be sent to
oceoa4,COSENHFLto lanoa4,COWATFLUboth to oceoa4 and lanoa4, whileCONSFTOTis not sent at
all; it is also specified thatSISUTESUwill come from oceoa4. The lanoa4 SMIOC file
lanoa4 land smioc.xml specifies thatLARUNOFFwill both go to oceoa4 and be written to a file
LARUNOFF.nc and thatLAWATFLXand SOSENHFLwill be received from atmoa4. Finally, in the

52 CHAPTER 6. COMPILING AND RUNNING OASIS4 AND TOYOA4

oceoa4_ocean

(4 hrs)

lanoa4_land

(2hrs)

atmoa4_atmos

(1 hr)

SOSSTSST

SISUTESU

LARUNOFF

SORUNOFF

SONSHLDO

CONSFTOT COSENHFL

SOSENHFL

COWATFLU

SOWAFLDO

LAWATFLX

OCWINSTS

ATWINSTS

SONSHLDO.nc

LARUNOFF.nc

12 hrs
trilinear

12 hrs

12 hrs
time accumul

trilinear

2 hrs
time accumul

12 hrs
time ave

add_scalar -273
trilinear

statistics

2 hrs

8 hrs
time accumul

trilinear
12 hrs

time accumul

Figure 6.2: TOYOA4 toy coupled model coupling and I/O configuration

oceoa4 SMIOC fileoceoa4 ocean smioc.xml , it is specified thatOCWINSTSandSOWAFLDOwill
be received from atmoa4,SORUNOFFfrom lanoa4, whileSONSHLDOwill be read from a fileSONSHLDO.nc;
SOSSTSSTwill be sent to atmoa4.

Different operations are performed by the PSMILe model interface on the coupling or I/O fields such as
statistics, time accumulation time averaging, as specified in the SMIOC files. The exchanges of the cou-
pling fields between atmoa4 and lanoa4 (and vice-versa) are direct, involving possibly some repartitioning
if their parallel partitioning are different. As atmoa4 and oceoa4 do not have the same grid, their exchanges
of coupling fields go through the Transformer (not illustrated on figure 6.2) where a linear interpolation is
performed. The different coupling and I/O periods are also specified in the different SMIOC files.

TOYOA4 also illustrates the use of a coupling restart file for fieldCOSENHFLfor which a positive lag of
2 is defined. The first time TOYOA4 is run, the variablerun should be set tostart in run toyoa4 .
In that case, the filescc.xml.start is copied inscc.xml and used, TOYOA4 is run for 3 days
starting January1st 2000, and the first fieldCOSENHFLreceived by lanoa4 comes from the restart file
COSENHFLtoyatm atmos rst.2000-01-01T00 00 00.nc ; at the end of the run, the restart file
for the next run,COSENHFLtoyatm atmos rst.2000-01-04T00 00 00.nc , is created by the
last call to prismput for COSENHFLin atmoa4. A next run of 3 days starting January4th 2000 can then
be run by changingrun=restart in run toyoa4 and executingrun toyoa4 again.

A successfull execution of TOYOA4 (withrun set tostart in run toyoa4) produces files that can
be compared to results inprism/util/running/toyoa4/outdata . In particular, files containing
standard output from the different components (e.g. atmoa4.0, lanoa4.0, oceoa4.0) should end with lines
like

6.3. RUNNING TOYOA4 53

--- Note: MPI_Finalize was called ---
--- from prism_terminate. ---

54 CHAPTER 6. COMPILING AND RUNNING OASIS4 AND TOYOA4

Appendix A

Scalability with OASIS4

One of the major enhancements of OASIS4 compared to OASIS3 is the full parallelization of thePSMILe
(see section 4.5.1) and the Transformer (see section 3.2).

In 2004, at the end of the EU PRISM project funded by the European Community, the toy coupled model
simple-mg (see directoryprism/src/mod/oasis4/src/examples) with a T106 resolution for
the atmosphere toy model was selected for scalability tests. The results of those scalability tests are
presented here, even if they were not performed with the current OASIS4 version.

Selected platforms were NEC SX-6, SGI Altix and Origin, AMD-Athlon PC Cluster, and AMD-Opteron
PC Cluster. Table A.1 summarizes the characteristics of the tested systems and used software.

Model/Feature CPU specs Main Memory Compiler MPI-library
(per CPU)

NEC SX-6 0,5 GHz (*16) 8 GB F90: Rev. 285 NEC-MPI
C++: Rev.063 LC310039

SGI ALTIX Madison 1,5 Ghz 2 GB Intel ifort 8.050 SGI MPT 1.12
6 MB L3-cache Intel icc 8.069

SGI-Origin R14000 0,7 Ghz 2 GB MIPSPro 7.4.1 SGI MPT 1.12
8 MB L2-cache

AMD-Athlon PC 2,8 GHz, 32 bit 4 GB Absoft 32bit F95 9.0 r2 MPICH-
Myrinet

AMD-Opteron PC 2,2 GHz, 64 bit 4 GB Pathscale 1.4.1 LAM 7.1.1

Table A.1: Characteristics of the tested systems and used software for scalability tests

Simulation with up to 24 CPUs were carried out, starting with one process for each component model
and the Transformer (1-1-1) and ending with 8 processes per component model and the Transformer (8-
8-8). The notation in the result tables below is X-Y-Z where X, Y, and Z are respectively the number of
processes for the atmosphere toy model, for the Transformer, and for the ocean toy model. For example:
4-1-4 means 4 processes for each component model and 1 processes for the Transformer.

Two measures of the scalability is taken in eachsimple-mg toy component model:

• the time in seconds until theprism enddef is reached. This measure is reported in the columns
‘enddef ATM’ and ‘enddef OCE’ for respectively the atmosphere and the ocean component model
in the tables below. The subroutineprism enddef (see section 4.5.1) finishes the definition phase
and includes the parallel neighborhood search for the interpolation done in parallel by thePSMILe
linked to the models. Increasing the number of processes for the component models should therefore
reduce this time. This is a measure of thePSMILe scalability.

• the required time in seconds for a ping-pong exchange of data with the other component. This
measure is reported in the columns ‘ping-pong ATM’ and ‘ping-pong OCE’ for respectively the
atmosphere and the ocean component model in the tables below. As the data are transfered in

55

56 APPENDIX A. SCALABILITY WITH OASIS4

parallel by thePSMILe and interpolated by the Transformer, increasing the number of processes
for the Transformer and for the component models should reduce this time. This is a measure of the
Transformer and of thePSMILe scalability.

SX6 enddef ATM enddef OCE ping-pong ATM ping-pong OCE
1-1-1 (1 node) 0.6 0.6 0.4 0.4
2-2-2 (1 node) 0.4 0.4 0.2 0.2
4-4-4 (2 nodes) 0.4 0.2 0.05 0.2

Table A.2: Scalability results for simple-mg on NEC SX-6.

SGI enddef ATM enddef OCE ping-pong ATM ping-pong OCE
1-1-1 3.5 1.8 1.1 1.9
2-2-2 1.6 1.3 0.6 1.0
4-4-4 0.7 0.6 0.3 0.5
4-1-4 1.0 0.9 0.8 0.8

Table A.3: Scalability results for simple-mg on SGI-Altix.

SGI enddef ATM enddef OCE ping-pong ATM ping-pong OCE
1-1-1 9.6 5.5 2.6 5.4
2-2-2 6.0 3.6 1.4 3.0
4-4-4 1.3 2.9 0.8 1.8
8-8-8 0.7 0.6 0.3 0.7
8-1-8 1.0 1.0 1.6 2.5

Table A.4: Scalability results for simple-mg on SGI-ORIGIN.

AMD enddef ATM enddef OCE ping-pong ATM ping-pong OCE
1-1-1 4.6 4.6 1.9 4.1
2-2-2 2.3 2.5 0.9 2.0
4-4-4 1.0 3.2 0.9 1.2
4-1-4 1.4 1.1 2.4 2.8

Table A.5: Scalability results on AMD Athlon-Cluster.

AMD enddef ATM enddef OCE ping-pong ATM ping-pong OCE
1-1-1 1.5 1.6 0.6 1.1
4-4-4 1.1 1.0 0.2 0.3
8-8-8 0.4 0.5 0.1 0.2
8-1-8 0.7 0.6 0.6 0.7

Table A.6: Scalability results on AMD Opteron-Cluster.

In general the elapsed times are in the order of seconds for the simple-mg. Nevertheless scalability of
OASIS4PSMILe and Transformer can be demonstrated by comparing the ‘enddef’ or ‘ping-pong’ times
for configurations 1-1-1, 2-2-2, 4-4-4, and 8-8-8 (when available). This time decreases on all platforms
with the number of processes used (the only exceptions is the ‘enddef OCE’ time for the AMD Athlon PC
Cluster for 4-4-4 on table A.5).

At the end of each table, the numbers for the 4-1-4 or 8-1-8 configuration are also given. This number
illustrated the necessity of having a parallel Tranformer; in fact, the ping-pong tests realised with only
1 process for the Transformer (4-1-4 or 8-1-8 configuration) show an elapse time which is up to 3 times
larger than the ping-pong tests realised with 4 or 8 processes for the Transformer (4-4-4 or 8-8-8 configu-
ration).

57

The parallelization of the OASIS4 gives therefore big advantages in case of expensive interpolations be-
tween component fields exchanged between highly parallel component models. The parallel neighbour-
hood search in thePSMILe library as well as the parallel Transformer reduce interpolation time as well
as communication time.

58 APPENDIX A. SCALABILITY WITH OASIS4

Bibliography

[1] Ahrem, R. et al., 2003: MpCCI Mesh-based parallel Code Coupling Interface, Specification Version
2, Fraunhofer Institute for Algorithms and Scientific Computing. Sankt Augustin, Germany.

[2] Balaji, 2001: Parallel Numerical Kernels for Climate Models, ECMWF TeraComputing Workshop
2001, World Scientific Press, Reading.

[3] Buja, L. and T. Craig, 2002: Community Climate System Model CCSM 2.0.1 User Guide, National
Center of Atmospheric Research, Boulder, CO.

[4] Eaton, B., Gregory, J., Drach, B., Taylor, K., and Hankin, S.PMEL, 2003: NetCDF Climate and
Forecast (CF) Metadata Conventions, http://www.cgd.ucar.edu/cms/eaton/cf-metadata/index.html

[5] Gropp, W., S. Huss-Lederman, A. Lumsdaine, E. Lusk, B. Nitzberg, W. Saphir, and M. Snir, 1998:
MPI – The Complete Reference, Vol. 2 The MPI Extensions, MIT Press.

[6] Legutke, S. and V.Gayler, 2004: The PRISM Standard Compilation Environment, PRISM Report
Series No 4.

[7] Li, J., W. Liao, A. Choudhary, R. Ross, R. Thakur, R. Latham, A. Siegel, B. Gallagher, M. Zingale,
2003: Parallel NetCDF: A High-performance Scientific IO Interface, Proceedings of the SC’03, Nov
15-21, Phoenix, Arizona, USA. http://www-unix.mcs.anl.gov/parallel-netcdf

[8] Rew, R. K. and G. P. Davis, 1997: Unidata’s netCDF Interface for Data Access: Status and Plans,
Thirteenth International Conference on Interactive Information and Processing Systems for Meteo-
rology, Oceanography, and Hydrology, Anaheim, California, American Meteorology Society.

[9] Snir, M., S. Otto, S. Huss-Lederman, D. Walker and J. Dongarra, 1998: MPI - The Complete Refer-
ence, Vol. 1 The MPI Core, MIT Press.

[10] http://www.w3.org/XML/

[11] http://www.xmlsoft.org/

59

60 BIBLIOGRAPHY

	Introduction
	OASIS4 sources
	Copyright Notice
	Reference
	How to obtain OASIS4 sources
	OASIS4 directory structure
	OASIS4 sources
	Other OASIS4 directories
	The toy coupled model TOYOA4 directory structure

	OASIS4 Driver/Transformer
	The Driver part
	The Transformer part

	OASIS4 Model Interface library, PSMILe
	Initialisation phase
	prism_init
	prism_init_comp
	prism_get_localcomn
	prism_initialized

	Retrieval of SCC XML information
	prism_get_nb_ranklists
	prism_get_ranklists

	Grids and related quantities definition
	prism_def_grid
	prism_set_corners
	prism_set_mask
	prism_def_partition
	prism_reducedgrid_map
	prism_set_points
	prism_set_points_gridless
	prism_set_vector

	Declaration of Coupling/IO fields
	prism_def_var

	Neighborhood search and determination of communication patterns
	prism_enddef

	Exchange of coupling and I/O fields
	prism_put
	prism_get
	prism_put_inquire
	prism_put_restart

	Termination Phase
	prism_terminate
	prism_terminated
	prism_abort

	Query and Info Routines
	prism_get_calendar_type
	prism_calc_newdate
	prism_error
	prism_version
	prism_get_real_kind_type
	prism_remove_mask

	OASIS4 description and configuration XML files
	Introduction to XML concepts
	The Application Description (AD)
	The Potential Model Input and Output Description (PMIOD)
	Component model general characteristics
	Grid families and grids
	Coupling/IO fields (transient variables)

	The Specific Coupling Configuration (SCC)
	The Specific Model Input and Output Configuration (SMIOC)
	Component model general characteristics
	Grid families and grids
	Coupling/IO fields (transient variables)
	The `output' element
	The `input' element
	 The element `interpolation'
	The `file' element

	Compiling and running OASIS4 and TOYOA4
	Introduction
	Compiling OASIS4 and its associated PSMIle library
	Compilation with TopMakefileOasis4
	Compilation using the PRISM Standard Compiling Environment (SCE)
	Some details on the compilation
	Remarks and known problems

	Running TOYOA4

	Scalability with OASIS4

