
OASIS4_1 User Guide

S. Valcke, CERFACS
M. Hanke, DKRZ
L. Coquart, CNRS

June 2011 -
CERFACS Technical Report

TR-CMGC-11-50

Copyright Notice
c© Copyright 2004-2006 by CERFACS, NEC Europe Ltd., Silicon Graphics GmbH, NEC

Deutschland GmbH
Copyright 2006-2008 by CERFACS, NEC Europe Ltd.
Copyright 2009-2011 by CERFACS, CNRS and DKRZ
All rights reserved.

How to get assistance?
Assistance can be obtained by sending an electronic mail to oasis4_help(at)lists.enes.org.

Contents

1 Acknowledgments 1

2 Introduction 2

3 OASIS4 sources 3
3.1 Warning and Copyright Notice . 3
3.2 Reference . 4
3.3 How to obtain OASIS4 sources . 4
3.4 OASIS4 directory structure . 4

3.4.1 OASIS4 sources . 4
3.4.2 Other OASIS4 directories . 4

4 OASIS4 Driver/Transformer 6
4.1 The Driver part . 6
4.2 The Transformer part . 7
4.3 Interpolations and regriddings . 7

4.3.1 2D interpolations and regriddings . 8
4.3.2 3D interpolations and remappings . 9
4.3.3 User-defined remapping . 9

5 OASIS4 Model Interface library, PSMILe 12
5.1 Initialisation phase . 13

5.1.1 prism init . 13
5.1.2 prism init comp . 13
5.1.3 prism get localcomn . 14
5.1.4 prism initialized . 14

5.2 Retrieval of SCC XML information . 15
5.2.1 prism get nb ranklists . 15
5.2.2 prism get ranklists . 15

5.3 Grids and related quantities definition . 16
5.3.1 prism def grid . 16
5.3.2 prism set corners . 18
5.3.3 prism set mask . 19
5.3.4 prism def partition . 20
5.3.5 prism reducedgrid map . 23
5.3.6 prism set points . 24
5.3.7 prism set points gridless . 25

5.4 Declaration of Coupling/IO fields . 26
5.4.1 prism def var . 26

5.5 Neighbourhood search and determination of communication patterns 27
5.5.1 prism enddef . 27

i

ii CONTENTS

5.6 Exchange of coupling and I/O fields . 28
5.6.1 prism put . 29
5.6.2 prism get . 30
5.6.3 prism put inquire . 31
5.6.4 prism put restart . 31

5.7 The Restart Mechanism . 33
5.7.1 An example of a restart generation . 34

5.8 Termination Phase . 34
5.8.1 prism terminate . 34
5.8.2 prism terminated . 35
5.8.3 prism abort . 35

5.9 Query and Info Routines . 35
5.9.1 prism get calendar type . 35
5.9.2 prism calc newdate . 36
5.9.3 prism error . 36
5.9.4 prism version . 36
5.9.5 prism get real kind type . 36
5.9.6 prism remove mask . 37

6 OASIS4 description and configuration XML files 38
6.1 Introduction to XML concepts . 38
6.2 The Application Description (AD) . 39
6.3 The Potential Model Input and Output Description (PMIOD) 40

6.3.1 Component model general characteristics . 40
6.3.2 Grids . 40
6.3.3 Coupling/IO fields (transient variables) . 41

6.4 The Specific Coupling Configuration (SCC) . 42
6.5 The Specific Model Input and Output Configuration (SMIOC) 43

6.5.1 Component model general characteristics . 43
6.5.2 Grids . 44
6.5.3 Coupling/IO fields (transient variables) . 44
6.5.4 The ‘output’ element . 44
6.5.5 The ‘input’ element . 46
6.5.6 The element ‘interpolation’ . 47
6.5.7 The ‘file’ element . 49

7 Compiling and running OASIS4 and TOYOA4 51
7.1 Introduction . 51
7.2 Compiling OASIS4 and its associated PSMIle library . 51

7.2.1 Compilation with TopMakefileOasis4 . 51
7.2.2 Some details on the compilation . 52
7.2.3 Remarks and known problems . 53

7.3 Compiling and running TOYOA4 . 54
7.4 Getting some internal CPU and elapse time statistics . 55

Index 58

Chapter 1

Acknowledgments

We would like to thank the main past or present developers of OASIS4 (in alphabetical order, with the
name of their institution at the time of their contribution to OASIS):

Philippe Bourcier (CNRS)
Joseph Charles (CERFACS)
Laure Coquart (CNRS)
Damien Declat (CERFACS)
Jean-Marie Epitalon (CERFACS)
Josefine Ghattas (CERFACS)
Moritz Hanke (DKRZ)
Jean Latour (CERFACS)
René Redler (NEC, now MPI-M)
Hubert Ritzdorf (NEC)
Thomas Schoenemeyer (NEC)
Sophie Valcke (CERFACS)
Reiner Vogelsang (SGI)

1

Chapter 2

Introduction

The development of the fully parallel OASIS4 coupler started during the EU FP5 PRISM project to answer
the needs of the European climate modelling community that was, at the time, starting to target higher
resolution climate simulations on massively parallel platforms. The concepts of parallelism and efficiency
drove OASIS4 developments, at the same time keeping in its design the concepts of low-intrusiveness and
portability that made the success of OASIS3. Chapter 3 provides a more detailed description of OASIS4
sources and how to obtain them.
An ESM coupled by OASIS4 consists of different applications (or executables), each one hosting only
one or more than one climate components (e.g. model of the ocean, sea-ice, atmosphere, etc.). After
compilation, OASIS4 sources form a separate Driver/Transformer executable and a coupling interface
library, the PSMILe that needs to be linked to and used by the components.
Each component must be provided with an XML1 file that describes its coupling interface established
through PSMILe calls. The configuration of one particular ESM simulation, i.e. the coupling and I/O
exchanges that will be performed at run-time between the components or between the components and
disk files, is also done through XML files. A Graphical User Interface (GUI), described in detail in the
separate OASIS4-GUI User Guide, facilitates the creation of those XML files.
During the run, the role of the Driver/Transformer is to extract the configuration information defined by
the user in the XML files, to organize the process management of the coupled simulation, and to perform
the regridding needed to express, on the grid of the target components, the coupling fields provided by the
source components on their grid. The OASIS4 Driver/Transformer is described in chapter 4.
The PSMILe , linked to the component models, includes a data exchange library which performs the
MPI-based (Message Passing Interface, Snir et al. (1998)) exchanges of coupling data, either directly or
via additional Transformer processes, and the GFDL mpp io library Balaji (2001), which reads/writes
the I/O data from/to files following the NetCDF format. The PSMILe and its Application Programming
Interface (API) are described in chapter 5.
The structure and content of the descriptive and configuring XML files are then detailed in chapter 6.
In chapter 7, instructions on how to compile and run the example toy coupled model TOYOA4 using
OASIS4 are given; a toy model is an empty model in the sense that it contains no physics or dynamics.
It reproduces, however, a realistic coupling in terms of number of component models, number, size and
interpolation of the coupling fields, coupling frequencies, etc.
The originality of OASIS4 relies in its low intrusiveness, its great flexibility, and in its parallel neigh-
bourhood search based on the geographical description of the process local domains performed by the
PSMILe library.

1http://www.w3.org/XML

2

Chapter 3

OASIS4 sources

3.1 Warning and Copyright Notice

This software and ancillary information called OASIS4 is free software. The public may copy, distribute,
use, prepare derivative works and publicly display OASIS4 under the terms of the Lesser GNU General
Public License (LGPL) as published by the Free Software Foundation, provided that this notice and any
statement of authorship are reproduced on all copies. If OASIS4 is modified to produce derivative works,
such modified software should be clearly marked, so as not to confuse it with the current OASIS4 version.

The developers of the OASIS4 software attempt to build a parallel, modular, and user-friendly coupler
accessible to the climate modelling community. Although we use the tool ourselves and have made every
effort to ensure its accuracy, we can not make any guarantees. The software is provided for free; in
return, the user assume full responsibility for use of the software. The OASIS4 software comes without
any warranties (implied or expressed) and is not guaranteed to work for you or on your computer. The
various teams and individuals involved in development and maintenance of the OASIS4 software are not
responsible for any damage that may result from correct or incorrect use of this software.

The software is in constant evolution and known bugs under consideration are detailed on the developers’
wiki at: https://oasistrac.cerfacs.fr/report/1

OASIS4 offers interpolations and regriddings based on the Los Alamos National Laboratory SCRIP 1.4
library1. The SCRIP 1.4 copyright statement reads as follows:

“Copyright 1997, 1998 the Regents of the University of California. This software and ancillary infor-
mation (herein called SOFTWARE) called SCRIP is made available under the terms described here. The
SOFTWARE has been approved for release with associated LA-CC Number 98-45. Unless otherwise in-
dicated, this SOFTWARE has been authored by an employee or employees of the University of California,
operator of Los Alamos National Laboratory under Contract No. W-7405-ENG-36 with the United States
Department of Energy. The United States Government has rights to use, reproduce, and distribute this
SOFTWARE. The public may copy, distribute, prepare derivative works and publicly display this SOFT-
WARE without charge, provided that this Notice and any statement of authorship are reproduced on all
copies. Neither the Government nor the University makes any warranty, express or implied, or assumes
any liability or responsibility for the use of this SOFTWARE. If SOFTWARE is modified to produce
derivative works, such modified SOFTWARE should be clearly marked, so as not to confuse it with the
version available from Los Alamos National Laboratory.”

1http://climate.lanl.gov/Software/SCRIP/

3

4 CHAPTER 3. OASIS4 SOURCES

3.2 Reference

If you feel that your research has benefited from the use of the OASIS4 software, we will greatly appreciate
your reference to the following report (Redler et al. (2010)):
R. Redler, S. Valcke and H. Ritzdorf, 2010: OASIS4 - A Coupling Software for Next Generation Earth
System Modelling, Geoscience Model Development, 3, 87 - 104, DOI:10.5194/gmd-3-87-2010.
http://www.geosci-model-dev.net/3/87/2010/gmd-3-87-2010.pdf

3.3 How to obtain OASIS4 sources

It is interesting for the developers to know who is using the software and for which purpose. Therefore, to
obtain instructions on how to download OASIS4 sources , the user first has to fill a registration form avail-
able at https://verc.enes.org/models/software-tools/oasis/download/oasis4-registration-form asking for the
user identity, whether he/she wants to use OASIS3 or OASIS4, the component models he/she would like
to couple with OASIS, whether it is a new coupled model or an upgrade of an exiting one, the target
compute platform, and the project. The user can also tick a box if he/she agrees to appear on the OASIS
download page and another box if he/she wants to subscribe to OASIS mailing list.
After submitting the form, the user will get detailed instruction on how to download the OASIS4 sources,
either from the OASIS SVN server at CERFACS, memphis, or from CERFACS anonymous ftp site. The
sources distributed are always the latest ones registered on the SVN trunk. The sources in the tar balls
available from the ftp site are automatically update each day.

3.4 OASIS4 directory structure

3.4.1 OASIS4 sources

OASIS4 sources are divided into three directories under oasis4/lib/ and one directory
oasis4/src. With this structure, only a relatively small library common oa4 is used by both the OA-
SIS4 Driver/Transformer executable and by the OASIS4 PSMILe coupling library The different directo-
ries are:

• oasis4/lib/common oa4/: contains sources that are used both by the Driver/Transformer
and the PSMILe coupling library. After compilation, these sources becomes the libcommon oa4.a
library.

• oasis4/lib/mpp io/: contains the sources of the GFDL I/O library Balaji (2001). After com-
pilation, these sources form the library libmpp io.a. Compiling and linking this library to a compo-
nent model is not mandatory if the PSMIle I/O functionality is not used (see compilation details in
section 7).

• oasis4/lib/psmile oa4/: contains the sources that form the main part of PSMILe coupling
library and become, after compilation the library libpsmile oa4.a.

• prism/src/mod/oasis4/: contains the main part of OASIS4 Driver/Transformer sources.
Linked with the library libcommon oa4.a, these sources form, after compilation, the OASIS4
Driver/Transformer executable named oasis4.MPI1.x or oasis4.MPI2.x (according to the
choice of MPI1 or MPI2 done at compilation, see section 7 for details).

3.4.2 Other OASIS4 directories

In the oasis4 directory, three more directories /doc, /examples and /util are found:
• /doc, contains OASIS4 User Guide.

3.4. OASIS4 DIRECTORY STRUCTURE 5

• /examples, contains three toy examples:
– toyoa4 : see details in section 7.3
– toyoa4 restart : to generate the restart file for field COSENHFL in the toyoa4 example, see the

README therein
– tutorial1 : reproduces ping-pong exchanges between model1 and model2 with either the OA-

SIS3 or OASIS4 coupler, with or without lag, in parallel or not; see the readme tutorial1.pdf
therein. This is probably the simplest toy model available to start learning about OASIS4.

• /util contains the following directories
– creation restart oa4 : sources to generate restart files for coupled runs with OASIS4, by read-

ing data in restart files used by OASIS3.
– gui : the sources of the Graphical User Interface that can be used to generate the component

description and configuration XML files (see section 6); a GUI User Guide is available in
oasis4/util/gui/doc

– /make dir : top makefile and platform dependent header files for compiling OASIS4 (see
section 7.2.1)

– /xmlfiles : the SCHEMAs of the different XML files used with OASIS4 (see section 6)
– mppnccombine : mppnccombine.nc, which may be used to join together NetCDF data

files representing a decomposed domain into a unified NetCDF file.
– runscripts : scripts to run the examples
– license and perl script : can be ignored as they contain scripts of interest for devel-

opers only.

Chapter 4

OASIS4 Driver/Transformer

OASIS4 Driver/Transformer tasks are described in this chapter to give the user a complete understanding
of OASIS4 functionality. The realisation of these tasks at run-time is however completely automatic and
transparent for the user. OASIS4 Driver/Transformer is parallel; the Driver tasks are performed by the
master process only but the interpolation tasks are performed by all.

4.1 The Driver part

The first task of the Driver is to get the process management information defined by the user in the SCC
XML file (see section 6.4). The information is first extracted using the libxml C library 1, and then passed
from C to Fortran to fill up the Driver structures.
Once the Driver has accessed the SCC XML file information, it will, if the user has chosen the spawn
approach, launch the different executables (or applications) that compose the coupled model, follow-
ing the information given in the SCC file. For the spawn approach, only the Driver should therefore
be started and a full MPI2 implementation Gropp et al. (1998) is required as the Driver uses the MPI2
MPI Comm Spawn Multiple functionality. If only MPI1 implementation is available Snir et al. (1998),
the Driver and the applications must be all started at once in the run script; this is the so-called not spawn
approach. The advantage of the spawn approach is that each application keeps its own internal commu-
nication context (e.g. for internal parallelisation) unchanged as in the standalone mode, whereas in the
not spawn approach, OASIS4 has to recreate an application communicator that must be used by the
application for its own internal parallelisation. Of course, the not spawn is also possible if an MPI2
library is used2.
The Driver then participates in the definition of the different MPI communicators (see section 5.1.3), and
transfers the relevant SCC information to the different component PSMILecoupling library (correspond-
ing to their prism init call, see section 5.1.1).
When the simulation context is set, the Driver accesses the SMIOCs XML files information (see section
6.5), which mainly defines all coupling and I/O exchanges (e.g. source or target components or files, local
transformations, etc.). The Driver sorts this component specific information, and defines global identifiers
for the components, their grids, their coupling/IO fields, etc. to ensure global consistency between the
different processes participating in the coupling. Finally, the Driver sends to each component PSMILe
coupling library the information relevant for its coupling or I/O exchanges (e.g. source or components
target or files and their global identifier) and information about the transformations required for the differ-
ent coupling fields. This corresponds to the component PSMILe prism init comp call (see section
5.1.2)3. With such information, the applications and components are able to run and perform the cou-

1http://www.xmlsoft.org
2See section 7.2.2 for related use of appropriate CPP keys.
3If the component is running stand-alone but linked with the PSMILe library for I/O actions only, there is no need to start

6

4.2. THE TRANSFORMER PART 7

pling exchanges as specified by the user. The Driver/Transformer processes are then used to execute the
Transformer routines (see Section 4.2).
When a component reaches the end of its execution, its processes send a signal to the Transformer master
process by calling the PRISM Terminate routine (see Section 5.8.1). Once the Transformer master process
has received as many signals as processes active in the coupled run, it sends a termination message to all
Transformer processes and ends.

4.2 The Transformer part

The Transformer manages the regridding (also called the interpolation) of the coupling fields, i.e. the
expression on the target component model grid of a coupling field given by a source component model on
its grid. The Transformer performs only the weights calculation and the regridding per se. As explained
in section 5.5.1, the neighbourhood search, i.e. the determination for each target point of the source points
that will contribute to the calculation of its regridded value, is performed in parallel in the source PSMILe.
The Transformer can be assimilated to an automate that reacts following predefined sequences of actions
considering what is demanded. The implementation of the Transformer is based on a loop over the re-
ceptions of predefined arrays of 11 Integers sent by the component PSMILe . These 11 integers give a
clear description of what has to be done by the Transformer. The Transformer is thus able to react with a
pre-defined sequence of actions matching the corresponding sequence activated on the sender side.
The first type of action that can be requested by the component PSMILe is to receive the grid information
resulting of the different neighbouring searches. The Transformer receives, for each intersection of source
and target process calculated by the PSMILe , the latitude, longitude, mask, or areas of all source and
target grid points in the intersection involved in the regridding (EPIOS and EPIOT, see section 5.5.1).
The Transformer then calculates the weight corresponding to each source neighbour depending on the
regridding method chosen by the user. The end of this phase corresponds in the component models to the
PSMILe routine prism enddefcall.
During the simulation timestepping, the Transformer receives orders from the PSMILe linked to the
different component processes to receive data for transformation (source component process) or to send
transformed data (target component process). After a reception, the Transformer applies the appropriate
transformations or regridding following the information collected during the initialisation phase (here, the
regridding corresponds to applying the pre-calculated weights to the source field). In case of request of
fields, the Transformer is able to control if the requested field has already been received and transformed.
If so, the data field is sent; if not, the data field will be sent as soon as it is received and treated.
At the end of the run, the participating processes inform the Transformer once they are ready to finish the
coupled simulation so that they all terminate collectively.

4.3 Interpolations and regriddings

OASIS4 offers interpolations and regriddings based on the Los Alamos National Laboratory SCRIP 1.4
library4. For more details on these algorithms, see SCRIP 1.4 documentation in Jones (1999) or
oasis4/doc/SCRIPusers.pdf. These interpolations and related options are described here in more
detail. All related XML elements and attributes used in the SMIOC configuration files and mentionned
here are precisely defined in section 6.5.6 and in their corresponding schema in oasis4/util/xmlfiles.
With OASIS4, all coupling fields must be provided on a 3D grid. If a coupling field is in fact given on a
2D surface (e.g. the SST at the ocean surface) the vertical dimension of the field and the grid must have an

the Driver/Transformer; the PSMILe component will automatically read its SMIOC information below the prism init comp
call. In this case, the component SMIOC is used to configure the I/O of the component from/to files.

4http://climate.lanl.gov/Software/SCRIP/

8 CHAPTER 4. OASIS4 DRIVER/TRANSFORMER

extent of 1 (see more details in section 5.3). Therefore, the interpolation of a coupling field must always
be expressed either as a full 3D interpolation (see element interp3D) or as a combination of same 2D
interpolation for all vertical levels (see element interp2D) followed by a 1D interpolation in the vertical
(see element interp1D).
Currently, the 3D interpolation algorithms available are 3D nearest neighbour (element nneighbour3D)
or trilinear (element trilinear). A remapping using a set of weights and addresses pre-defined by the
user and stored in a file can also be chosen with element user3D (see 4.3.3). The 2D interpolation avail-
able are 2D nearest neighbour (element nneighbour2D) or bilinear (element bilinear) or bicubic
(element bicubic) or 2D conservative remapping (element conservativ2D). For the interpolation in
the vertical, a linear (element linear) algorithm or no interpolation at all (element none), which should
be chosen when the extent of the grid is 1 in the vertical, are possible choices.
When the interpolation is expressed as a 2D interpolation for all vertical levels followed by a 1D interpo-
lation in the vertical, the combinations that can be specified are:

• nneighbour2D and none
• bilinear and none
• bicubic and none
• conservativ2D and none
• nneighbour2D and linear
• bilinear and linear.

4.3.1 2D interpolations and regriddings

More details on the 2D interpolations and regriddings available and related options are provided here.

• 2D nearest neighbour (element nneighbour2D): an inverse-distance weighted nearest-neighbour
interpolation (the great circle distance on the sphere is used):

– The number N of source neighbours can be specified (element nbr neighbours).
– The distance can be weighted by a Gaussian (element gaussian variance)
– If some or all of the N nearest neighbours are masked, different options are available (element
if masked)

– This interpolation is available for all types of 2D grid supported by OASIS4 (see section 5.3.1).
• Bilinear (element bilinear): an interpolation based on a local bilinear approximation :

– If some or all of the 4 bilinear neighbours are masked, different options are available (element
if masked).

– This interpolation is available for all types of 2D grid supported by OASIS4 (see section 5.3.1)
• Bicubic (element bicubic): an interpolation based on a local bicubic approximation :

– Two bicubic methods are available (element bicubic method): either gradient i.e. the
4 enclosing source neighbour values and gradient values based on the 12 additional enclosing
neighbours are used (only for PRISM reglonlatvrt and PRISM irrlonlat regvrt
grids, see section 5.3.1) or sixteen i.e. the 16 enclosing source neighbour values are used
(this second method assumes that the source points are located 4 by 4 at the same latitude and
is therefore valid only for PRISM reglonlatvrt and PRISM gaussreduced regvrt
grids, see section 5.3.1).

– If some or all of the 16 bilinear neighbours are masked, different options are available (element
if masked).

• 2D conservative (element conservativ2D): the weight of a source cell is proportional to area of
the source cell intersected by target cell.

– Currently, only the first order conservative remapping is available.

4.3. INTERPOLATIONS AND REGRIDDINGS 9

– Different types of normalization can be applied (element methodnorm2D)
– This remapping is available for all types of 2D grid supported by OASIS4 (see section 5.3.1).
– The following considerations must be taken into account when choosing the 2D conservative

remapping:
∗ Using the divergence theorem, the SCRIP library evaluates the cell intersections with

the line integral along the cell borders enclosing the area. As the real shape of the bor-
ders is not known (only the location of the 4 corners of each cell is defined with the
prism set corners call, see 5.3.2), the library assumes that the borders are linear in latitude
and longitude between two corners. In general, this assumption is not really valid close to
the poles. For latitudes above the north thresh or below the south thresh values
specified in oasis4/lib/common oa4/include/psmile.inc, the library eval-
uates the intersection between two border segments using a Lambert equivalent azimuthal
projection. Problems have been observed in some cases for the grid cell located around
this north thresh or south thresh latitude.

∗ Another limitation of the SCRIP conservative remapping algorithm is that is also sup-
poses, for line integral calculation, that sin(latitude) is linear with respect to the longi-
tude on the cell borders which again is in general not valid close to the pole.

∗ For a proper consevative remapping, the corners of a cell have to coincide with the corners
of its neighbour cell.

∗ Duplicated cells (e.g. when a periodic grid overlaps to itself) are not allowed. In general,
duplicated cells should be excluded from the valid shape (see 5.3.1); if it is not possible,
dupliczted cells should then be masked.

∗ A target grid cell intersecting no source cell (either masked or non masked) at all i.e.
falling in a “hole” of the source grid will not be treated and will not receive any value

∗ If a target grid cell intersects only masked source cells, it will be given the psmile dundef
value (=-280177.0).

4.3.2 3D interpolations and remappings

3D interpolations and remappings in OASIS4 are just 3D extensions of the SCRIP 2D algorithms (see
section 4.3.1). These interpolations are implemented but still need to be fully validated.

• 3D nearest neighbour (element nneighbour3D): an inverse-distance weighted nearest-neighbour
interpolation (the distance is the square root of the sum of the square radial distance and the square
of the great circle distance on the sphere at the highest vertical level):

– The number N of source neighbours can be specified (element nbr neighbours).
– The distance can be weighted by a Gaussian (element gaussian variance)
– If some or all of the N nearest neighbours are masked, different options are available (element
if masked)

– This interpolation is available for all types of 3D grid supported by OASIS4 (see section 5.3.1).
• trilinear (element trilinear): an interpolation based on a local trilinear approximation :

– If some or all of the 8 bilinear neighbours are masked, different options are available (element
if masked).

– This interpolation is available for all types of 2D grid supported by OASIS4 (see section 5.3.1).

4.3.3 User-defined remapping

The remapping algorithms described above are based on a geographical localization of the points or cells
on the target and source grids. However, some of the fields exchanged in a coupled experiment, like the

10 CHAPTER 4. OASIS4 DRIVER/TRANSFORMER

water runoff of rivers or the water added to the oceans by the melting icebergs, do not fit these interpolation
schemes, since these events occur at some specific place and so we would like to model them as occurring
at specific places. This locality implies that the remapping should associate some specific points of the
source grid with some specific points of the target grid with a user-defined weight. There is no true
”interpolation” ; instead, the computation of a value of the target function is defined by a weighted sum
of a few values of the source function, taken from specific points of the source grid. The user-defined
remapping is illustrated at Figure 4.1.

Figure 4.1: User-defined remapping: association between specific points of the source grid with some specific
points of the target grid

In order to achieve this, the user has to define, in a separate NetCDF file, the links associating specific
points of the source grid with specific points of the target grid and the weights corresponding to each link.
This is the ”user-defined weight-and-address file”. This file has to provide for each of the nlinks links,
the index of the source point in each dimension of the source grid and the index of the target point in each
dimension of the target grid. The links, source and target indices for the user-defined remapping illustrated
at Figure 4.1 are detailed in Figure 4.2

Figure 4.2: Links, source and target indices for the user-defined remapping illustrated at Figure 4.1

4.3. INTERPOLATIONS AND REGRIDDINGS 11

An example of a toy model using a user-defined remapping can be found at
https://oasistrac.cerfacs.fr/browser/trunk/prism/dev ex/user3d-auto . For this example, the content of the
user-defined weight-and-address NetCDF file is:
netcdf weights_addresses {
dimensions:
nlinks = 10 ;
variables:
int src_ind1(nlinks) ;
src_ind1:title = "source grid first index" ;
int src_ind2(nlinks) ;
src_ind2:title = "source grid 2nd index" ;
int src_ind3(nlinks) ;
src_ind3:title = "source grid third index" ;
int tgt_ind1(nlinks) ;
tgt_ind1:title = "target grid first index" ;
int tgt_ind2(nlinks) ;
tgt_ind2:title = "target grid 2nd index" ;
int tgt_ind3(nlinks) ;
tgt_ind3:title = "target grid third index" ;
double weight(nlinks) ;
weight:title = "weight" ;
}

Chapter 5

OASIS4 Model Interface library, PSMILe

An system coupled by OASIS4 consists of different applications (each application forming one exe-
cutable), each one hosting one or more than one components. To communicate with the rest of the cou-
pled system, each component needs to perform appropriate calls to the OASIS4 Model Interface Library
(PSMILe)1 . The PSMILe is the software layer that manages the coupling data flow between any two
(possibly parallel) components, directly or via additional Transformer processes, and handles data I/O
from/to files.

The PSMILe is layered, and while it is not designed to handle the component internal communication,
it completely manages the communication to other components and can also manage the details of the
I/O file access. The detailed communication patterns among the possibly parallel components are estab-
lished by the PSMILe. They are based on the source and target components identified for each coupling
exchange by the user in the SMIOC XML files (see section 6.5) and on the local domain covered by
each component process. This complexity is hidden from the component codes as well as the exchanges
of coupling fields per se built on top of MPI. In order to minimise communication, the PSMILe also
includes some local transformations on the coupling fields, like accumulation, averaging, gathering or
scattering, and performs the required transformation locally before the exchange with other components
of the coupled system.

The interface was designed to keep modifications of the model codes at a minimum when implementing
the API. Some complexity arises however in the API from the need to transfer not only the coupling data
but also the definition of the grid, mask, etc. as will be explained below. In order to match the data
structures of the various component codes (in particular for the geographical information) as closely as
possible, Fortran90 overloading is used. All grid description and field arrays provided by the component
code through the PSMILe API (e.g. the grid point location through prism set points , see 5.3.6)
can have one, two or three numerical dimensions and can be of type “Real” or “Double precision”. There
is no need to copy the data arrays prior to the PSMILe API call in order to match some predefined internal
PSMILe shape. To interpret the received array correctly, a properly defined grid type is required (see sec-
tion 5.3.1), since the grid type implicitly specifies the shape of the data arrays passed to the PSMILe. Few
API routines, i.e. prism init, prism enddef and prism terminate, are collective routines
that need to be called by all processes of all applications whether or not they participate in the coupling
exchanges, while the other API routine should be called only by the application processes involved in the
coupling.

A major principle followed throughout the declaration phase and during the transmission of transient fields
is that of using identifiers (ID) to data objects accessible in the user space once they have been declared.
Like in MPI, the memory that is used for storing internal representations of various data objects is not
directly accessible to the user, and the objects are accessed via their ID. Those IDs are of type INTEGER

and represent an index in a table of the respective objects. The object and its associated ID are significant
only on the process where it was created.

1The name PSMILe originally comes from the ‘PRISM System Model Interface Library’.

12

5.1. INITIALISATION PHASE 13

The PSMILe API routines that are defined and implemented are not subject to modifications between the
different versions of the OASIS4 coupler. However new routines may be added in the future to support
new functionality. In addition to that the PSMILe is extendable to new types of coupling data and grids.
The next sections describe the functioning of the PSMILe, and explain its different routines in the logical
order in which they should be called in a component.

5.1 Initialisation phase

The developer first has to use in his code the PRISM module (‘use PRISM’, see
oasis4/lib/psmile oa4/src/prism.F90), which declares all PRISM structures and PRISM in-
teger named parameters from oasis4/lib/common oa4/include/prism.inc (data types, grid
types, error codes, etc.). The following routines then participate in the coupling initialisation phase:

5.1.1 prism init

prism init (appl name, ierror)

Argument Intent Type Definition
appl name In character(len=*) name of application in SCC XML file
ierror Out Integer returned error code

Table 5.1: prism init arguments

The initialisation of the OASIS4 coupling environment is performed with a call to prism init. This
routine belongs to the class of so-called collective calls and therefore has to be called once initially
by each process of each application.
Since all communication is built on MPI routines, the initialisation of the MPI library is checked be-
low prism init, and a call to MPI Init is performed if it has not been called already by the ap-
plication. It is therefore not allowed to place a call to MPI Init after the prism init call in the
application code, since this will lead to a runtime error with most MPI implementations. Conversely,
a call to prism terminate (see 5.8.1) will terminate the coupling. If MPI Init has been called
before prism init, internal message passing within the application is still possible after the call to
prism terminate; in this case, MPI Finalizemust be called somewhere after prism terminate
in order to shut down the parallel application in a well defined way.
Within prism init, it is detected if the coupled model has been started in the spawn or not spawn
mode (see 4.1 and 6.4). In spawn mode, all spawned processes remain in prism init and participate
in the launching of further processes until the spawning of all applications is completed.
Below prism init call, the SCC XML information (see 6.4) is transfered from the Driver to the appli-
cation process PSMILe (see 4.1).

5.1.2 prism init comp

prism init comp (comp id, comp name, ierror)

Argument Intent Type Definition
comp id Out Integer returned component ID
comp name In character(len=*) name of component in SCC XML file
ierror Out Integer returned error code

Table 5.2: prism init comp arguments

14 CHAPTER 5. OASIS4 MODEL INTERFACE LIBRARY, PSMILE

prism init comp needs to be called initially by each process once for each component executed by
the process, no matter if different components are executed sequentially by the process or if the process is
devoted to only one single component. 2

Below the prism init comp call, the component SMIOC XML information (see 6.5) is transfered
from the Driver to the component process PSMILe or is read directly by the PSMILe itself in the stand-
alone case (see 4.1).

5.1.3 prism get localcomn

prism get localcomm (comp id, local comm, ierror)

Argument Intent Type Definition
comp id In Integer component ID or PRISM Appl id
local comm Out Integer returned MPI communicator to be used by the component or

the application for its internal communication
ierror Out Integer returned error code

Table 5.3: prism get localcomm arguments

MPI communicators for the internal communication of the application and/or the components, separated
from the MPI communicators used for coupling exchanges, are provided by the PSMILe and can be
accessed via prism get local comm.
If the argument comp id is the component ID returned by routine prism init comp, then local comm
is a communicator gathering all component processes running the related comp name component as pre-
scribed by the user in the SCC XML file (see section 6.4) ; if instead, the predefined named integer
PRISM appl id is provided, the returned local comm is a communicator gathering all processes of
the application.
This routine needs to be called only by MPI parallel code; it is the only MPI specific call in the PSMILe
API.

5.1.4 prism initialized

prism initialized (flag, ierror)

Argument Intent Type Definition
flag Out Logical logical indicating whether prism init was already called or not
ierror Out Integer returned error code

Table 5.4: prism initialized arguments

This routine checks if prism init has been called before. If flag is true, prism init was success-
fully called; if flag is false, prism init was not called yet.

2If prism init has not been called before by the process, prism init comp calls it and returns with a warning. Al-
though recommended, it is therefore not necessary to implement a call to prism init; in this case, as prism init is a
collective call, all processes of all applications need to call prism init comp .

5.2. RETRIEVAL OF SCC XML INFORMATION 15

5.2 Retrieval of SCC XML information

This section presents PSMILe routine that can be used in the application code to retrieve SCC XML
information (see 6.4).

5.2.1 prism get nb ranklists

prism get nb ranklists (comp name, nb ranklists, ierror)

Argument Intent Type Definition
comp name In character(len=*) name of the component in the SCC XML file
nb ranklists Out Integer number of rank lists for the component in the

SCC file
ierror Out Integer returned error code

Table 5.5: prism get nb ranklists arguments

This routine needs to be called before prism get ranklists (see 5.2.2) to obtain the number of rank
lists that are specified for the component in the SCC XML file (i.e. the number of elements rank specified
for the element component, see 6.4).

5.2.2 prism get ranklists

prism get ranklists (comp name, nb ranklists,ranklists, ierror)

Argument Intent Type Definition
comp name In character(len=*) name of the component in the SCC XML file
nb ranklists In Integer number of rank lists
ranklists Out Integer Array(nb ranklists,3) contain-

ing for the nb ranklists lists of
component ranks: a minimum value
(nb ranklists,1), a maximum value
(nb ranklists,2), an increment value
(nb ranklists,3).

ierror Out Integer returned error code
Table 5.6: prism get ranklists arguments

This routine returns the lists of ranks that are specified for the component in the SCC XML file. The
ranks are the numbers of the application processes used to run the component; in the SCC XML file, the
component ranks are given as lists of 3 numbers giving, in each list, a minimum value, a maximum value,
and an increment value (see also section 6.4). For example, if processes numbered 0 to 7 are used to run
a component, this can be describe with one rank list (0, 7, 1); if processes 0 to 2 and 5 to 7 are used, this
can be described with two rank lists (0, 2, 1) and (5, 7, 1). If no maximum values is specified in the SCC
file the maximum value is set to the minimum value. If no increment is specified the increment is set to 1.
Rationale: The application rank lists may be needed before the call to prism init comp in order to
run the components according to the rank lists. Since a component ID is available only after the call to
prism init comp, the component name is required as input argument to the prism get ranklists
call instead of the component ID.

16 CHAPTER 5. OASIS4 MODEL INTERFACE LIBRARY, PSMILE

5.3 Grids and related quantities definition

In order to describe the grids onto which the coupling fields sent or received by the components are placed,
the following approach was chosen.
All grids have to be described as covering a 3D domain. A 2D surface in a 3D space necessarily requires
information about the location in the third dimension. For example, the grid used in an ocean model to
calculate the field of sea surface temperature (SST) would be described vertically by a coordinate array
of extent 1 in the vertical direction; the (only) level at which the SST field is calculated would be defined
(prism set points) as well as its vertical bounds (prism set corners).
The first step is to declare a grid (see prism def grid in 5.3.1). The grid volume elements which
discretise the sphere need to be defined by providing the corner points (vertices) of these volume elements
(see prism set corners in 5.3.2). At this time, other properties of these volume elements can also be
provided, such as the volume element mask (see prism set mask in 5.3.3).
In a second step, different sets of points on which the component calculates its variables can be placed in
these volume elements. There is only one definition of volume elements per grid but there can be more
than one set of points for the different variables on the same grid. The model developer describes where
the points are located (see prism set points in 5.3.6). Points can represent means, extrema or other
properties of the variables within the volume.
The description of the grid and related quantities is done locally for the coupling domain treated
by the local process. The communication patterns used to exchange the coupling fields will usually be
based on the geographical description of the local process domain. However, for fields located on a non-
geographical grid, the coupling exchanges are also supported, based on the description of the local process
partition in terms of indices in the global index space (see 5.3.1 and 5.3.4)3.

5.3.1 prism def grid

prism def grid(grid id, grid name, comp id, valid shape, grid type,ierror)

Argument Intent Type Definition
grid id Out Integer returned grid ID
grid name In character(len=*) name of the grid (see below)
comp id In Integer component ID as provided by

prism init comp
valid shape In Integer array(2,ndim) (see table 5.8) giving for each

dimension the minimum and maximum index
of the valid range (see below)

grid type In Integer PRISM integer named parameter describing
the grid structure (see table 5.8)

ierror Out Integer returned error code
Table 5.7: prism def grid arguments

This routine declares a grid and describes its structure.

• grid name

The argument grid name must match the attribute ‘local name’ of the corresponding element
‘grid’ in the SMIOC XML file and must be unique within the component.

• valid shape

The array valid shape is dimensioned (2,ndim) and gives, for each of the ndim dimensions of
the grid (see table 5.8), the minimum and maximum local index values corresponding to the “valid”

3Note that the IO of fields located on a non-geographical grid are not supported in the current OASIS4 version

5.3. GRIDS AND RELATED QUANTITIES DEFINITION 17

part of the corner (see 5.3.2), point (see 5.3.6, mask (see 5.3.3) and field (see 5.4.1) arrays treated
by the process, without the halo region (i.e. iloclow, ilochigh, jloclow, jlochigh on figure 5.7). For
example, if the actual extent of the first dimension is from 1 to 100, it may be that the “valid” part of
the array goes from 2 to 98 (i.e. valid shape(1,1)=2 and valid shape(2,1)=98 . Note
that the “valid” part of the grid must be uniquely defined and cannot overlap to itself.

valid shape

(ilochigh,jlochigh)

(iloclow,jloclow)

(ihalohigh,jhalohigh)

(ihalolow,jhalolow)

actual shape

local part

Figure 5.1: 2D example of the valid shape (expressed as valid shape in prism def grid) of the corner,
point, mask and field arrays transfered through the PSMILe API with shape corner actual shape
or point actual shape or mask actual shape or var actual shape respectively (see be-
low).

• grid type

The argument grid type describes the grid type and implicitly specifies the shape of the corner,
point, mask and field arrays passed to the PSMILe. Grids that are currently supported cover:

– in the horizontal: regular, irregular, Gaussian reduced
– in the vertical: regular
– non-geographical grids (‘gridless’ grids) are also supported for repartitioning (but not for I/O

in the current version).
Table 5.8 lists the possible values of grid type for the different grids supported by OASIS4 and
the corresponding number of dimensions ndim.
Other characteristics of the grid will be described by other routines and the link will be made by the
grid identifier grid id.

grid type ndim
PRISM gridless 3, noted (i,j,k) here
PRISM reglonlatvrt 3, noted (i,j,k) here
PRISM gaussreduced regvrt 2, noted (npt hor,k) here
PRISM irrlonlat regvrt 3, noted (i,j,k) here

Table 5.8: Possible values of grid type and ndim for the different grids supported by PSMILe.

18 CHAPTER 5. OASIS4 MODEL INTERFACE LIBRARY, PSMILE

Gaussian reduced grids. For Gaussian reduced grids, all processes defining the grid have to call
prism def grid with grid type=PRISM gaussreduced regvrt. Two numerical dimensions
(ndim=2) are used to describe the 3D domain: the first dimension covers the horizontal plane and the
second dimension covers the vertical. Furthermore, all these processes have to provide a description
of the global reduced gaussian grid by a call to prism reducedgrid map (see 5.3.5), and have to
describe the local partition of the grid with a call to prism def partition (see 5.3.4).
Non-geographical grids. For fields located on a non-geographical grid, prism def grid still has to
be called with grid type = PRISM gridless. For coding reasons, ndim must be always equal
to 3 and the call to prism def grid must be done with valid shape(1:2, 2:3) = 1. The
partitioning of non-geographical grids must also be described by a call to prism def partition (see
5.3.4); furthermore, a call to prism set points gridless (see 5.3.7) is also required.

5.3.2 prism set corners

prism set corners (grid id, nc, corner actual shape, corner 1st array,
corner 2nd array, corner 3rd array, ierror)

Argument Intent Type Definition
grid id In Integer grid ID returned by prism def grid
nc In Integer total number of corners for each volume

element
corner actual shape In Integer array(2,ndim) giving for each ndim

dimension of corner xxx array the
minimum and maximum index of the ac-
tual range (see below)

corner 1st array In Real or Double corner longitude (see Table 5.10)
corner 2nd array In Real or Double corner latitude (see Table 5.10)
corner 3rd array In Real or Double corner vertical position (see Table 5.10)
ierror Out Integer returned error code

Table 5.9: prism set corners arguments

For geographical grids, the volume elements which discretise the computing domain covered locally by the
process are defined by giving the geographical position of the corner (vertices) of those volume elements.
The exchange and repartitioning between two coupled components of a field provided on a geographical
grid will be based on this geographical description of the local partition.

• corner actual shape

The array corner actual shape is dimensioned (2,ndim) and gives, for each of the ndim
dimensions (see table 5.8), the minimum and maximum local index values corresponding to the
“actual” shapes of the corner xxx array arrays treated by the process including halo regions.
corner actual shape is therefore greater or equal to the valid shape (see section 5.3.1).

• corner xxx array

Shape of corner xxx shape

Table 5.10 gives the expected shape of the corner xxx array for the various grid type. For
PRISM irrlonlat regvrt, the corners must be given in an order such that when moving from
one corner to the next one, the grid cell interior must always be to the left4. Furthermore, the first
corner must be the lower left one in the (i,j) space, as illustrated in Figure 5.2 in the case nchalf = 4.

4This means that the corners must be given in a mathematical positive sense for a right-handed (i,j,k) co-
ordinate system, but in a mathematical negative sense for a left-handed (i,j,k) coordinate system. See also
http://en.wikipedia.org/wiki/Cartesian coordinate system.

5.3. GRIDS AND RELATED QUANTITIES DEFINITION 19

grid type corner 1st array corner 2nd array corner 3rd array
PRISM reglonlatvrt (i,2) (j,2) (k,2)
PRISM gaussreduced regvrt (npt hor,2) (npt hor,2) (k,2)
PRISM irrlonlat regvrt (i,j, nchalf) (i,j, nchalf) (k,2)

Table 5.10: Dimensions of corner xxx arrays for the various grid type; nc is the total number of corners
for each volume element; nchalf is nc divided by 2; i, j, k, npt hor are the extent of the respective
numerical dimensions (see table 5.8).

1,1 2,1 3,1

1,2

1,3

2,2

2,3 3,3

3,2

i

j

1 2

34

Figure 5.2: Corner ordering for PRISM irrlonlat regvrt grids (here with nchalf = 4)

Units of corner xxx array

Currently, the array corner 1st array must be provided in degrees East in the interval -7*180
to 7*180; longitudes of the corners of one cell have to define the size of the cell (e.g. a cell
with corners at 5 and 355 is a cell of 350 degrees, not a cell of 10 degrees). Currently, the ar-
ray corner 2nd array must be provided in degrees North (spherical coordinate system) in the
interval -90 to 90. For corner 3rd array, units must be the same on the source and target sides.

5.3.3 prism set mask

prism set mask(mask id, grid id, mask actual shape, mask array,
new mask, ierror)

Argument Intent Type Definition
mask id InOut Integer mask ID
grid id In Integer grid ID returned by prism def grid
mask actual shape In Integer array(2,ndim) giving for each ndim dimension

of mask array the minimum and maximum in-
dex of actual range

mask array In Logical array of logicals; see table 5.12 for its profile; if an
array element is .true. (.false.), the corresponding
field point is (is not) valid.

new mask In Logical always .true. (in the current version)
ierror Out Integer returned error code

Table 5.11: prism set mask arguments

20 CHAPTER 5. OASIS4 MODEL INTERFACE LIBRARY, PSMILE

This routine defines a mask array. Different masks can be defined for the same grid. One particular mask
will be attached to a field by specifying the corresponding mask id in the prism def var call used
to declare the field (see section 5.4.1). The shape of mask array is given in table 5.12 for the different
grid types.

grid type mask array
PRISM reglonlatvrt (i,j,k)
PRISM gaussreduced regvrt (npt hor,k)
PRISM irrlonlat regvrt (i,j,k)

Table 5.12: Dimensions of mask array for the various grid type; i, j, k, npt hor are the extent of the
respective numerical dimensions (see table 5.8).

5.3.4 prism def partition

prism def partition (grid id, nbr blocks, offset array, extent array, ierror)

Argument Intent Type Definition
grid id In Integer grid ID returned by prism def grid
nbr blocks In Integer number of blocks, in the global index space, covered by the

valid shape domain
offset array In Integer array(nbr blocks, ndim) containing for each block

the offset in each ndim dimension in a global index space
sweeping all “valid” parts of local domains

extent array In Integer array(nbr blocks, ndim) containing for each block
the extent in each ndim dimension in the global index
space.

ierror Out Integer returned error code
Table 5.13: prism def partition arguments

The local partition treated by the process must also be described with a call to prism def partition
in terms of indices in a global index space sweeping all “valid” parts of local domains, therefore based on
the valid shape defined in the routine prism def grid, .
The global index space is a unique and common indexing for all grid points of the component. For
example, if a component covers a global domain of 200 grid points that is distributed over two processes
covering 100 points each, the first and second partition local indices can both be (1:100); however, their
global indices will be respectively (1:100) and (101:200).
A partition may also cover different sets of points disconnected in the global index space; each one of
those sets of point constitutes one block and has to be described by its offset and extent in the global
index space. Let’s suppose, for example, that the 200 points in the first i direction of a component are
distributed over two processes such that points with i= 1 to 50 and i = 76 to 100 are treated by the first
process and such that points with i = 51 to 75 and i = 101 to 200 are treated by the second process. In this
case, the number of blocks for each process is 2, and the first process blocks can be described with global
offsets of 0 and 75 (offset array(1,1)=0, offset array(2,1)=75) and extents of 50 and
25 (extent array(1,1)=50, extent array(2,1)=25), while the second process blocks can be
described by global offsets of 50 and 100 (offset array(1,1)=50, offset array(2,1)=100)
and extent of 25 and 100 (extent array(1,1)=25,
extent array(2,1)=100). An example of offset array and extent array is available in the
tutorial toy model is oasis4/examples/tutorial1 (see the readme tutorial1.pdf therein).

5.3. GRIDS AND RELATED QUANTITIES DEFINITION 21

Gaussian reduced grids .

For Gaussian reduced grids, prism def partition must be called by each process to describe its lo-
cal partition. The horizontal partitioning, described by offset array(:,1) and extent array(:,1),
must describe each latitudinal band of the reduced grid local partition as a block on its own. The
offset array(:,1) refer to the offset of each block in a horizontal global index space defined as
the sequence of points starting at the most northern (or southern) latitude band and is going down in
circular manner to the most southern (or northern) latitude band.

In this OASIS4 version, the horizontal partitioning, if any, must be the same for all vertical levels; there-
fore, offset array(:,2) must always be equal 0 and extent array(:,2) must always be equal
to the number of vertical levels.

Note that in addition all processes have to call prism reducedgrid map for a description of the global
reduced Gaussian grid (see 5.3.5).

Non-geographical grids (‘gridless’ grids).

Coupling exchanges (but not I/O in the current version) of fields not located on a geographical grid are sup-
ported, based on the description of the process local partition in terms of indices in the global index space.
For these ‘gridless’ grids, as ndim=3 but only the first dimension is meaningful, extent array(:,2:3)
= 1 offset array(:,2:3) = 0.

2D partitions supported

Different types of 2D partitions with one or more than one block per partition are supported for the
different grids.

• 2D partitions supported for PRISM reglonlatvrt and PRISM irrlonlat regvrt grids

For these type of grids, rectangular partitions with one or more blocks per partition, as illustrated in
Figure 5.3 are supported. Coupling and I/O are supported for this type of partitions.

Figure 5.3: Partitions supported for PRISM reglonlatvrt and PRISM irrlonlat regvrt grids

Some more complex partitions are also supported for these grids if one declares them as
PRISM gaussreduced regvrt grids (see Figure 5.6).

22 CHAPTER 5. OASIS4 MODEL INTERFACE LIBRARY, PSMILE

• 2D partitions supported for PRISM gaussreduced regvrt

For these grids, partitions with complete or partial latitudinal bands are supported. As explained
above, each latitudinal band must be expressed as a separate block. Figure 5.4 illustrate cases where
the latitudinal bands are consecutive, where as figure 5.5 illustrate a case where the latitudinal bands
are not consecutive. Coupling and I/O are supported when the latitudinal bands are consecutive but
I/O are not supported -in the current OASIS4 version- when the latitudinal bands are not
consecutive.

Figure 5.4: 2D partitions supported for PRISM gaussreduced regvrt (with consecutive complete or partial
latitudinal bands

Figure 5.5: 2D partitions supported for PRISM gaussreduced regvrt with non consecutive partial latitudinal
bands

5.3. GRIDS AND RELATED QUANTITIES DEFINITION 23

• Partitions supported for PRISM reglonlatvrt and grids declared as PRISM gaussreduced regvrt

The search algorithms developped for PRISM gaussreduced regvrt allows to support more
general partitions, even for PRISM reglonlatvrt if they are declared as PRISM gaussreduced regvrt.
Figure 5.6 illustrates the case of partitions with partial latitudinal bands and with non-consecutive
blocks. These cases should work but have not been thoroughly tested though. As above, I/O are not
supported -in the OASIS4 current version- when the latitudinal bands are not consecutive (i.e. case
G on Figure 5.6).

Figure 5.6: Partitions supported for PRISM reglonlatvrt and grids declared as
PRISM gaussreduced regvrt

5.3.5 prism reducedgrid map

prism reducedgrid map (grid id, nbr latitudes, nbr points per lat, ierror)

Argument Intent Type Definition
grid id In Integer grid ID returned by prism def grid
nbr latitudes In Integer number of latitudes of the global grid
nbr points per lat In Integer array(nbr latitudes) containing for each lati-

tude the number of grid points in longitude.
ierror Out Integer returned error code

Table 5.14: prism reducedgrid map arguments

For Gaussian reduced grids only - mandatory. All processes that announce a Gaussian reduced grid
have to call prism reducedgrid map for a description of the global reduced Gaussian grid, providing
the same information about the global grid. As the coordinates of a Gaussian reduced grid are expressed
in a 1d arrays, this additional information is needed to speed up the reconstruction of a 2d view of the 1d
arrays.
Example:

integer, parameter :: gnbr_lats = 96
integer :: gnbr_lons(gnbr_lats)
integer, parameter :: ndim = 48
integer :: array(ndim)
integer, intent(out) :: nbr_lons(2*ndim)
integer :: ierror

24 CHAPTER 5. OASIS4 MODEL INTERFACE LIBRARY, PSMILE

data array / &
20, 25, 36, 40, 45, 50, 60, 60, 72, 75, &
80, 90, 96, 100, 108, 120, 120, 120, 128, 135, &
144, 144, 160, 160, 160, 160, 160, 180, 180, 180, &
180, 180, 192, 192, 192, 192, 192, 192, 192, 192, &
192, 192, 192, 192, 192, 192, 192, 192/

do i = 1, ndim
gnbr_lons(i) = array(i)
gnbr_lons(2*ndim+1-i) = array(i)

enddo

call prism_reducedgrid_map (grid_id(1), gnbr_lats, gnbr_lons, ierror)
if (ierror /= 0) n_errors = n_errors + 1

5.3.6 prism set points

prism set points (point id, point name, grid id, point actual shape,
point 1st array, point 2nd array, point 3rd array,
new points, ierror)

Argument Intent Type Definition
point id InOut Integer ID for the set of points
point name In character(len=*) name of the set of points: can be

anything.
grid id In Integer grid ID returned by

prism def grid
point actual shape In Integer array(2,ndim) giving for

each ndim dimension of
point xxx array the min
and max index of actual range

point 1st array In Real or Double array giving the longitudes for this
set of grid points

point 2nd array In Real or Double array giving the latitudes for this set
of grid points

point 3rd array In Real or Double array giving the vertical positions
for this set the grid points

new points In Logical always .true. (in the current ver-
sion)

ierror Out Integer returned error code
Table 5.15: prism set points arguments

With prism set points the model developer describes the geographical localization of the variables
on the grid. Variables can represent means, extrema or other properties of the variables within the grid
cell volume. Different sets of points can be defined for the same grid (staggered grids); each set will have
a different point id. A full 3D description has to be provided; for example, a set of points discretising
a 2D surface must be given a vertical position. The profile of point xxx array is described in table
5.16.

Units for point 1st array, point 2nd array and point 3rd array must be respectively the
same than the ones for corner 1st array, corner 2nd array and corner 3rd array (see

5.3. GRIDS AND RELATED QUANTITIES DEFINITION 25

grid type point 1st array point 2nd array point 3rd array
PRISM reglonlatvrt (i) (j) (k)
PRISM gaussreduced regvrt (npt hor) (npt hor) (k)
PRISM irrlonlat regvrt (i,j) (i,j) (k)

Table 5.16: Dimensions of point xxx array for the various grid type; i, j, k, npt hor are the extent of
the respective numerical dimensions (see table 5.8).

section 5.3.2).
Non-geographical grids. For non-geographical grids (‘gridless’ grids), prism set points gridless
should be called instead of prism set points (see 5.3.7).

5.3.7 prism set points gridless

prism set points gridless(point id, point name, grid id, new points, ierror)

Argument Intent Type Definition
point id InOut Integer set of points ID
point name In character(len=*) name of the set of points: can be anything.
grid id In Integer grid ID returned by prism def grid
new points In Logical always .true. (in the current version)
ierror Out Integer returned error code

Table 5.17: prism set points gridless arguments

The routine prism set points gridless has to be called for non-geographical grids to retrieve a
grid point ID.

26 CHAPTER 5. OASIS4 MODEL INTERFACE LIBRARY, PSMILE

5.4 Declaration of Coupling/IO fields

5.4.1 prism def var

prism def var(var id, var name, grid id, point id, mask id, var nodims,
var actual shape, var type, ierror)

Argument Intent Type Definition
var id Out Integer returned field ID
var name In character(len=*) field name: must correspond to attribute

local name of element transient
in the SMIOC XML file and must be
unique within the component

grid id In Integer ID of the field grid (as returned by
prism def grid)

point id In Integer ID of the field set of points as returned
by prism set points

mask id In Integer ID of the field mask as re-
turned by prism set mask or
PRISM UNDEFINED.

var nodims In Integer var nodims(1): nb of var array di-
mensions (see 5.6.1 and 5.6.2) that will
contain the coupling/IO field (see 5.6),
i.e. ndim except for bundles, for
which it is ndim+1 (see table 5.8);
var nodims(2): number of bundles or 0.

var actual shape In Integer array(2,ndim) (array(2,ndim+1)
for bundle fields) giving for each ndim
dimension of var array (see 5.6.1
and 5.6.2) the minimum and maximum
index of actual range

var type In Integer data type of the field: PRISM
integer named parameter
PRISM Integer, PRISM Real
or PRISM Double Precision

ierror Out Integer returned error code
Table 5.18: prism def var arguments

After the initialisation and grid definition phases, each field that will be send/received to/from another
component (coupling field) or that will be written/read to/from a disk file (IO field) through PSMILe‘put’
/ ‘send’ actions needs to be declared and associated with a previously defined grid and mask.
The units of a coupling/IO field should be indicated in the PMIOD XML file. By consulting the appropriate
PMIOD, the user is able to check if the units of a coupling field match on the source and target side and if
not, he has to choose appropriate transformations in the SMIOC XML files.
For the case where a set of fields ordered along an extra dimension, sharing the same units, and located
on the same set of points (e.g. chemical species), need to be treated together, the ‘bundle’ notion has
been introduced. Such bundle field should be declared as one coupling/IO field and the number of bun-
dles should be indicate in var nodims(2); only one var id will be returned. This implies that the
complete bundle will have to be transfered (send) to the remote component at once, and that the remote
component must be able to treat these bundles; both components have to agree on the precise sequence of
the physical fields contained in this fields.

5.5. NEIGHBOURHOOD SEARCH AND DETERMINATION OF COMMUNICATION
PATTERNS 27

5.5 Neighbourhood search and determination of communication patterns

5.5.1 prism enddef

prism enddef (ierror)

Argument Intent Type Definition
ierror Out Integer returned error code

Table 5.19: prism enddef arguments

Following prism init, prism enddef is the second collective call and has to be called once by
each application process when all components within the application have completed their definition
phase. (The rest of this section can be skipped by users not interested in the PSMILe internal functioning.)
To perform the exchange of coupling fields during the run, it is required to establish communication only
between those pairs of processes that actually have to exchange data based on the user defined coupling
configuration in the SMIOCs XML files (see section 6.5).
For each coupling exchange involving a regridding between the source and the target grids, the neighbour-
hood search is performed. It identifies, for each grid point of each target process, the source grid points
and corresponding source process that will be used to calculate the target grid point value. For a coupling
exchange involving only repartitioning, each target grid point corresponds exactly to only one source grid
point; in this case the ‘neighbourhood search’ process identifies, for each grid point of each target process,
on which source process the matching source grid point is located.
In order to save memory and CPU time in the neighbourhood search and the establishment of the com-
munication patterns, prism enddef works in a parallel way on the local grid domain covered by each
application process as much as possible. The search algorithm is split into three parts.
In an initial step, each process calculates a bounding box covering its local geographical volume domain
previously defined by prism set corners (see section 5.3.2). The bouding boxes of all processes
are sent to and collected by all processes. Each source process calculates the intersection of its bounding
box with each other process bounding box, thereby identifying the potential interpolation partners and
corresponding bounding box intersection. (For fields located on non-geographical fields, see 5.3.1, the
intersection calculation is based on the local domain description in the global index space, see 5.3.4.) For
each bounding box intersection, the source process creates a sequence of simplified grids and correspond-
ing bounding boxes, each one coarsened by a factor of 2 with respect to the previous one, until falling
back onto the bounding box covering the whole intersection (similar to a Multigrid Algorithm). Starting
on the coarsest level the search algorithm determines, at each multigrid level, the source bounding box
for each target grid point in the intersection. When the bounding box at the finer level is identified, the
neighbours of the target grid point, i.e. the source points participating in its calculation (regridding case)
or the matching source grid point (repartitioning only case), are identified. The source locations that are
identified at this stage can be considered as a frist guess. The source locations are located close to the final
source location.
In a second step, the exact source locations are determined and provide the initial location to identify
further required neighbour points in a third step which is depending on the interpolation scheme chosen
by the user.
For each intersection of source and target grid processes, the ‘Ensemble of grid Points participating in the
Interpolation Operation (EPIO)’ (or in the repartitioning) on the source side (EPIOS) and on the target
side (EPIOT) are identified. The results of this search are transfered to the target process. For the coupling
exchange involving regridding, the EPIOS and EPIOT definition and all related grid information are also
transferred to the Transformer (see section 4.2).
As the results of the neighbourhood search are known in the source PSMILe, only the usefull grid points
will be effectively sent later on during the coupling exchanges, minimising the amount of data to be
transferred.

28 CHAPTER 5. OASIS4 MODEL INTERFACE LIBRARY, PSMILE

5.6 Exchange of coupling and I/O fields

The PSMILe exchanges are based on the principle of “end-point” data exchange. When producing data,
no assumptions are made in the source component code concerning which other component will consume
these data or whether they will be written to a file, and at which frequency. Likewise, when asking for
data, a target component does not know which other component produces them or whether they are read
in from a file. The target or the source (another component or a file) for each field is defined by the user
in the SMIOC XML file (see section 6.5) and the coupling exchanges and/or the I/O actions take place
according to the user external specifications. The switch between the coupled mode and the forced mode
is therefore totally transparent for the component. Furthermore, source data can be directed to more than
one target (other components and/or disk files).
The sending and receiving PSMILe calls prism put and prism get can be placed anywhere in the
source and target code and possibly at different locations for the different coupling fields. These routines
can be called by the model at each timestep. The actual date at which the call is performed and the date
bounds for which it is valid are given as arguments; the sending/receiving is actually performed only if the
date bounds include a time at which it should be activated, given the field coupling (or I/O) period indicated
by the user in the SMIOC; a change in the coupling or I/O period is therefore also totally transparent for
the component itself. The PSMILe can also take into account a timelag between the sending prism put
and the corresponding prism get defined by the user in the SMIOC (see item 6. of section 6.5.4).
Local transformations can be performed in the source component PSMILe below the prism put and/or
in the target component PSMILe below the prism get like time accumulation, time averaging, alge-
braic operations, statistics, scattering, gathering (see item 7. of section 6.5.4 and item 5. of section 6.5.5).
When the action is activated, each process sends or receives only its local partition of the data, corre-
sponding to its local grid defined previously. The coupling exchange, including data repartitioning if
needed, occurs either directly between the components, or via additional Transformer processes if regrid-
ding needed (see section 4.2).
If the user specifies that the source of a prism get or the target of a prism put is a disk file, the
PSMILe exploits the GFDL mpp io package [Balaji (2001)] for its file I/O. The supported file format is
NetCDF according to the CF convention [Eaton et al. (2003)]. The mpp io package is driven by a PSMILe
internal layer which interfaces with various sources of information. For instance, the definition of grids
and masks as well as the form of the data of a field is provided through the PSMILe API. On the other
hand the information with regard to the CF standard name and unit are provided by the SMIOC XML file
through the Driver.
The mpp io package can operate in three general I/O modes:

- Distributed I/O
Each process works on a individual file containing the I/O field on the domain onto which that
process works. Domain partitioning information is written into the resulting files such they can be
merged into one file during a post processing step.

- Pseudo parallel I/O
The whole field is read from or written to one file. The domain partitioning information is exploited
such that the data are collected - stitched together - during the write operation or distributed to the
parallel processes of a component during the read operation. This domain stitching or distribu-
tion is automatically done by the PSMILe on the component model master process and happens
transparently for the parallel component itself.

- Parallel I/O
A fully parallel I/O using the parallel NetCDF [Li et al. (2003)] library and MPI-IO is available.
This allows parallel IO of distributed data into a single NetCDF file which is controlled by MPI-IO
instead of collecting the data on the master process first. To have this feature available the PSMILe
has to be linked against the parallel NetCDF library. The PSMILe library has to be generated with

5.6. EXCHANGE OF COUPLING AND I/O FIELDS 29

-D PARNETCDF. Note that this type of IO is not yet supported for applications having more than
1 component.

The PSMILe I/O layer also copes with the fact that the input data may be spread accross a number of
different files5, and that NetCDF file format has certain restrictions with respect to size of a file. Therefore,
on output chunking of a series of time stamps across multiple files will be provided depending on a
threshold value of the file size.

5.6.1 prism put

prism put (var id, date, date bounds, var array, info, ierror)

Argument Intent Type Definition
var id In Integer field ID returned from

prism def var
date In Type(PRISM Time Struct) date at which the prism put is

performed
date bounds In Type(PRISM Time Struct) array(2) giving the date bounds be-

tween which this call is valid
var array In Integer, Real or Double field array to be sent (see table 5.21

for its profile, adding one dimension
for bundle fields)

info Out Integer returned info about action per-
formed (see below)

ierror Out Integer returned error code
Table 5.20: prism put arguments

This routine is called to send var array content to a target component or file. The target is defined by
the user in the SMIOC XML files (see section 6.5). This routine will return even if the corresponding
prism get has not been performed on the target side, both for an exchange through the Transformer
and for a direct exchange (for direct exchange the content of the var array is buffered in the PSMILe
and for an exchange through the Transformer the data are buffered in the Transformer). The shape of
var array is given in table 5.21 for the different grid types.

grid type var array
PRISM reglonlatvrt (i,j,k)
PRISM gaussreduced regvrt (npt hor,k)
PRISM irrlonlat regvrt (i,j,k)

Table 5.21: Dimensions of var array for the various grid type; i, j, k, npt hor are the extent of the
respective numerical dimensions (see table 5.8).

This routine can be called in the component code at each timestep but the sending is actually performed
only if the time period covered by the date bounds (with period =]date bounds(1), date bounds(2)]
i.e. with the lower and upper date bounds being respectively excluded and included) covers a valid
coupling or I/O date, given the field coupling or I/O period indicated by the user in the SMIOC XML
files. The date and date bounds arguments must be given as PRISM Time Struct structures (see

5The system calls ’scandir’ and ’alphasort’ are used to implement this feature (see routine
/oasis4/lib/psmile oa4/src/psmile io scandir.c). In case of problems with these system calls, one
may try to compile with the -D MYALPHASORT. If there are still problems, one has to comment the calls to
psmile io scandir no of files and psmile io scandir in psmile open file byid.F90, but then that
PSMILe functionality will not be provided anymore.

30 CHAPTER 5. OASIS4 MODEL INTERFACE LIBRARY, PSMILE

/oasis4/lib /common oa4/src/prism constants.F90). The sum of the time periods cov-
ered by the date bounds of the different prism put calls of a run must cover exactly the whole run
duration without any gap and any overlap. The meaning of the different info returned are as follows:

• PRISM NoAction = 0: no action is performed for this call
• PRISM Cpl = 1000: the array is only sent to another component
• PRISM CplIO = 1100: the array is sent to another component and written to a file
• PRISM CplRst = 1010: the array is sent to another component and written to a coupling restart file

(see 5.7).
• PRISM CplTimeop = 1001: the array is sent to another component and used in a time operation

(accumulation, averaging)
• PRISM CplIORst = 1110: the array is sent to another component, written to a file, and written to a

coupling restart file (see 5.7)
• PRISM CplIOTimeop = 1101: the array is sent to another component, written to a file, and used in

a time operation
• PRISM CplRstTimeop = 1011: the array is sent to another component, written to a coupling restart

file (see 5.7), and used in a time operation
• PRISM CplIORstTimeop = 1111: the array is sent to another component, written to a file, written

to a coupling restart file (see 5.7), and used in a time operation
• PRISM IO = 100: the array is only written to a file
• PRISM IORst = 110: the array is written to a file and to a coupling restart file (see 5.7)
• PRISM IOTimeop = 101: the array is written to a file and used in a time operation
• PRISM IORstTimeop = 111: the array is written to a file and to a coupling restart file (see 5.7) and

is used in a time operation
• PRISM Rst = 10: the array is only written to a coupling restart file
• PRISM RstTimeop = 11: the array is written to a coupling restart file (see 5.7) and used in a time

operation
• PRISM Timeop = 1: the array is used in a time operation

The meaning of the different ierror returned can be accessed using the routine prism error (see
section 5.9.3).

5.6.2 prism get

prism get(var id, date, date bounds, var array, info, ierror)

Argument Intent Type Definition
var id In Integer field ID returned by

prism def var
date In Type(PRISM Time Struct) date at which the prism get is

performed
date bounds In Type(PRISM Time Struct) array(2) giving the date bounds be-

tween which this call is valid
var array InOut Integer, Real or Double field array to be received (see Ta-

ble 5.8 for its profile, adding one
dimension for bundle fields)

info Out Integer returned info about action per-
formed (see below)

ierror Out Integer returned error code
Table 5.22: prism get arguments

5.6. EXCHANGE OF COUPLING AND I/O FIELDS 31

This routine is called to receive a field var array from a source component or file. The source is defined
by the user in the SMIOC XML files (see section 6.5). This routine returns only when the corresponding
prism put is performed on the source side and when data is available in var array, after regridding
if needed. The shape of var array is given in table 5.21 for the different grid types.

As for prism put , this routine can be called in the component code at each timestep but the receiving is
actually performed only if the time period covered by the date bounds (with period =]date bounds(1),
date bounds(2)] i.e. the lower and upper date bounds being respectively excluded and included) covers
a valid coupling or I/O date, given the field coupling or I/O period indicated by the user in the SMIOC
XML files. The sum of the time periods covered by the date bounds of the different prism get calls
of a run must cover exactly the whole run duration without any gap and any overlap.

Note that var array is of intent InOut and is updated only for the part for which data have been
effectively received. We therefore recommend to initialise var array with a very recognizable positive
value (i.e. 999999.) before the prism get to be able to clearly identify the data received; this value
should be positive so to clearly identify the target grid points which take the PSMILe dundef value
(=-280177.) after interpolation (see details in section 6.5.6.

The meaning of the different info returned is as follows:

• PRISM NoAction = 0: no action is performed for this call

• PRISM Cpl = 1000: the array is only received from another component

• PRISM IO = 100: the array is read from a file

• PRISM IOTimeop = 101: the array is read from a file and used in a time operation

The meaning of the different ierror returned can be accessed using the routine prism error (see
section 5.9.3).

5.6.3 prism put inquire

prism put inquire (var id, date, date bounds, info, ierror)

Argument Intent Type Definition
var id In Integer field ID returned from

prism def var
date In Type(PRISM Time Struct) date at which the prism put would

be performed
date bounds In Type(PRISM Time Struct) array(2) giving the date bounds be-

tween which the field would be valid
info Out Integer returned info about action that would

be performed (see below)
ierror Out Integer returned error code

Table 5.23: prism put inquire arguments

This function is called to inquire if the corresponding prism put (i.e. for same var id, date, and
date bounds) would effectively be activated. This can be useful if the calculation of the related
var array is CPU consuming.

The meaning of the different info returned is the same as for the prism put routine (see 5.6.1).

The meaning of the different ierror returned can be accessed using the routine prism error (see
section 5.9.3).

32 CHAPTER 5. OASIS4 MODEL INTERFACE LIBRARY, PSMILE

5.6.4 prism put restart

prism put restart (var id, date, date bounds, data array, info, ierror)

Argument Intent Type Definition
var id In Integer field ID from prism def var
date In Type(PRISM Time Struct) date at which the

prism put restart is per-
formed

date bounds In Type(PRISM Time Struct) array dimensioned (2) giving the
date bounds between which this data
is valid

data array In Integer, Real or Double data array to be transferred (see table
5.8 for its profile, adding one dimen-
sion for bundle fields),

info Out Integer returned info about action per-
formed

ierror Out Integer returned error code
Table 5.24: prism put restart arguments

This function forces the writing of a field into a coupling restart file and can be used in the same fash-
ion as prism put , except that the prism put restart does not consider any coupling period
from the SMIOC file and writes the data array into the restart file each time it is called. Note that a
prism put restart can follow a prism put .
This function should be used when a coupling restart file of a coupling field is needed (see section 5.7
for details on the restart mechanism) but not available. In that case, the user should run the source
component beforehand to create the first coupling restart file of an experiment explicitly with a call to
prism put restart . The returned info should be PRISM Rst = 10 (the array is only written to a
coupling restart file); in case the returned info is PRISM Noaction = 0, an internal error occured. The
meaning of the different ierror returned can be accessed using the routine prism error (see section
5.9.3).
To use prism put restart , one should pay attention to the following details:

• There must be a lag equal to 0 defined for the corresponding field in the component SMIOC XML
file (see 6.5.4) .

• Since the prism enddef performs some IO related initialisation, a prism put restart can-
not be invoked before the prism enddef is completed.

• The name of the restart file will be <field local name> <component local name>
<application local name> rst.<date>.nc, where <date> is the current run end date indicated

in the SCC XML file.
• The time information written into the restart file (variable time(time)) corresponds to the calling

argument date bounds(2). At restart, the time information in the restart file must be the run
start date indicated in the SCC XML file ± 2 seconds.

• Currently, fields written to a restart file via prism put restart are currently taken as is and
are not processed with respect to local operations like gathering/scattering averaging, summation or
any reduction operations.

A concrete example on how to use the PSMILe prism put restart routine to create an OASIS4 cou-
pling restart file can be found in directory oasis4/examples/toyoa4 restart (see the README
therein). In practice, it is recommended, as done in toyoa4 restart to follow these rules:

• In the SCC XML file, put the experiment start date = experiment end date = run
start date = run end date = the start date of the run for which the restart file will be created.

5.7. THE RESTART MECHANISM 33

• As date bounds arguments for the prism put restart put date bounds(2) = the start
date of the run for which the restart file will be created and date bounds(1) = some time (e.g.
one hour) before that same start date.

5.7 The Restart Mechanism

With OASIS4, a coupling restart file is required for the prism getperformed at the beginning the run
when the user wants the time stamp of the prism put to lag behing the time stamp of the corresponding
prism get. In OASIS4, this is realised by specifying a lag for the corresponding output field in the
source component SMIOC XML file (see 6.5.4). This lag specifies the number of prism put peri-
ods to be added to the prism put date and date bounds to match the corresponding prism get
date and date bounds in the target component. A prism put period is defined as the time be-
tween the upper and lower date bounds of a prism put; i.e. for a lag of 1, the time added to the
prism putdate and date bounds arguments will be once the time difference between the associated
date bounds.
If a lag is specified in the SMIOC file, two restart files are opened by the source PSMILe library under
the prism enddef , one for reading at the beginning of the run and one for writing at the end of the run.
For the first run of an experiment, a restart file has to be created externally by the user and provided at run
time (see prism put restart 5.6.4) . In the same fashion, the new restart that is written at run time
at the end of the run has to be provided as the input to the subsequent run.
The name of the netCDF restart file must be
<field name>_<component name>_<application name>_rst.<date>.nc, where
<date> is the run start date.
Inside the prism enddef (and therefore hidden from the user), the respective source PSMILe processes
automatically read the local partitions of their output coupling fields defined with a lag from the coupling
restart files. The field in the restart file must have a shape equal to the valid shape of the global grid (i.e. the
sum of the local valid shape over all source processes - see 5.3.1). Each process then automatically
sends its local restart information to the Transformer which performs the interpolation and sends the
interpolated fields to the target component (if no interpolation is required, the data is sent directly to the
target component).

prism_get

prism_get

prism_get

prism_get

prism_put

prism_put

prism_put

prism_put

prism_enddef

− psmile_get_restart

Component A Component B

prism_enddef

Figure 5.7: Schematic calling sequence for handling of restart files.

On the receiving side, the prism get of a coupling field defined with a lag in the source SMIOC XML
file, which date bounds include the run start date, will receive the data coming from the restart
file. The time information in the restart file (variable time(time)) must be the run start date
indicated in the SCC XML file with a tolerance of ± 2 seconds in the current implementation. For the

34 CHAPTER 5. OASIS4 MODEL INTERFACE LIBRARY, PSMILE

subsequent echanges, thanks to the lag, the prism put called by the source component with arguments
(source) date bounds will match the prism get called in the target component at at date =
(source) date bounds + lag. At the end of the run, a restart file will automatically be written
below a prism put call which date bounds(2) + lag exceeds the run end date6. The time
information written to the restart file will correspond to the end date of the run. This restart file has to
be made available for the next run.

5.7.1 An example of a restart generation

An example of how to generate a restart file for the OASIS4 toyoa4 toy coupled model is available in di-
rectory oasis4/examples/toyoa4 restart. In the toyoa4 toy coupled model, a field with name
COSENHFL is send from the atmosphere component to the land component; if a lag is specified for
this field in the atmosphere SMIOC file, a restart file must be provided for this field at the beginning
of the run. The sources from the toyoa4 restart example can serve as a template for the user
to create her own restart files by extending the Fortran source (atmoa4 rsst.F90) and the XML file (at-
moa4 atmos smioc.xml).
One can note that although grid information is written into the restart file, this information is not in-
terpreted by the OASIS4 PSMILe at runtime when the restart is read in. By having a closer look at at-
moa4 rst.F90, one will recognise that only a dummy grid is written out, but that the size of the field written
to the file exactly cover the valid shape of the global grid. The date in the restart file name and the time
information written into the restart file must match with the start date of toyoa4 first run. To achieve
this, the run start date and end date and the upper date bounds (date bounds(2)) of the
prism put restart are set to the toyoa4 initial run start date which is 1 Jan 2000, 0:0:00.0.
If the same toy example is run with lag set to zero no restart file is required, and the first prism get in
the land model will be served by the first prism put of the atmosphere.

5.8 Termination Phase

5.8.1 prism terminate

prism terminate (ierror)

Argument Intent Type Definition
ierror Out Integer returned error code

Table 5.25: prism terminate arguments

In analogy to the initialisation phase, a call to prism terminate, which again is a collective call and
therefore needs to be called by all processes of all applications, will make the calling process to wait
for other processes participating in the coupling to reach the prism terminate as well. At this point,
the following actions are performed:

• All open units under control of the PSMILe are closed.
• The output to standard out is flushed.
• The Driver is notified about the termination of the respective process.
• All memory under control of PSMILe is deallocated.

After calling prism terminate , no coupling exchanges are possible for this process and no further
I/O actions under control of the PSMILe can be performed; however, it is still possible for the application
to perform local operations and to write additional output which shall not be under control of the PSMILe.

6When the duration of the run does not equal a finite number of coupling period, the field is written to the restart file if
date bounds(2)+lag > last date where last date is the first coupling time ≥ run end date.

5.9. QUERY AND INFO ROUTINES 35

If MPI Init has been called in the code before the call to prism init, component internal MPI com-
munication is still possible after the call to prism terminate, until the MPI Finalize is called by
the component (see also section 5.1.1). Otherwise prism terminate will call MPI Finalizeitself.

5.8.2 prism terminated

prism terminated (flag, ierror)

Argument Intent Type Definition
flag Out Logical if .true., prism terminate was already called
ierror Out Integer returned error code

Table 5.26: prism terminated arguments

This routine can be used to check whether prism terminate has already been called by this process.
This may help to detect ambiguous implementations of multi-component applications.

5.8.3 prism abort

prism abort (comp id, routine, message)

Argument Intent Type Definition
comp id In Integer component ID as provided by prism init comp
routine In Character calling routine name
message In Character user defined message

Table 5.27: prism abort arguments

It is common practice in non parallel Fortran codes to terminate the program by calling a Fortran STOP in
case a runtime error is detected. In MPI-parallelised codes it is strongly recommended to call MPI Abort
instead to ensure that all parallel processes are stopped and thus to avoid non-defined termination of the
parallel program. For coupled application, the PSMILe provides a prism abort call which guarantees
a clean and well-defined shut down of the coupled model. We recommend to use prism abort instead
of a Fortran STOP or a MPI Abort.

5.9 Query and Info Routines

5.9.1 prism get calendar type

prism get calendar type (calendar name, calendar type id, ierror)

Argument Intent Type Definition
calendar name Out Character(len=132) name of calendar used
calendar type id Out Integer ID of calendar used
ierror Out Integer returned error code

Table 5.28: prism get calendar type arguments

This routine returns the name and the ID of the calendar used in the PSMILe. Currently, the only calendar
supported is the ‘Proleptic Gregorian Calendar’ (i.e. a Gregorian calendar7 extended to dates before 15
Oct 1582) and its ID is 1 (i.e. the PRISM integer name parameter PRISM Cal Gregorian = 1, see

7The Gregorian calendar considers a leap year every year which is multiple of 4 but not multiple of 100, and every year which
is a multiple of 400.

36 CHAPTER 5. OASIS4 MODEL INTERFACE LIBRARY, PSMILE

oasis4/lib/common oa4/include/prism.inc). Simple calendars with 360 and 365 days are
implemented but not directly available to the user. In a future version, the calendar type should be chosen
and specified by the user in an XML configuration file, read in from this XML file by the Driver, and
transfered to the PSMILe.

5.9.2 prism calc newdate

prism calc newdate (date, date incr, ierror)

Argument Intent Type Definition
date InOut Type(PRISM Time Struct) In and Out date
date incr In Integer, Real or Double Increment in seconds to add to the

date
ierror Out Integer returned error code

Table 5.29: prism calc newdate arguments

This routine adds a time increment of date incr seconds to the date given as In argument and re-
turns the result in the date as Out argument. The time increment may be negative. The time structure
PRISM Time Struct object is defined as a Fortran type of the form

Type PRISM_Time_Struct
Double Precision :: second
integer :: minute
integer :: hour
integer :: day
integer :: month
integer :: year

End Type PRISM_Time_Struct

5.9.3 prism error

prism error (ierror, error message)

Argument Intent Type Definition
ierror In Integer an error code returned by a PSMILe routine
error message Out character(len=*) corresponding error string

Table 5.30: prism error arguments

This routine returns the string of the error message error message corresponding to the error code
ierror returned by other PSMILe routines. In general, 0 is returned as error code if the routine com-
pleted without error; a positive error code means a severe problem was encountered.

5.9.4 prism version

prism version()

This routine prints a message giving the SVN revision of the PSMILe library currently used.

5.9.5 prism get real kind type

prism get real kind type (kindr, type, ierror)

5.9. QUERY AND INFO ROUTINES 37

Argument Intent Type Definition
kindr In Integer kind type parameter of REAL variables
type Out Integer PRISM datatype corresponding to kindr
ierror Out Integer returned error code

Table 5.31: prism get real kind type arguments

This routine returns in type the PRISM datatype which corresponds to the kind type parameter kindr.
type can be either PRISM Real = 4, or PRISM Double Precision = 5 (see
oasis4/lib/common oa4/include/prism.inc).

5.9.6 prism remove mask

prism remove mask (mask id, ierror)

Argument Intent Type Definition
mask id In Integer mask ID as returned by prism set mask
ierror Out Integer returned error code

Table 5.32: prism remove mask arguments

The routine removes the mask information linked the mask ID mask id given as argument.

Chapter 6

OASIS4 description and configuration
XML files

This chapter details the content of the XML description and configuration files used with OASIS4.

• The XML description files are used to:

– describe each application: the “Application Description” (AD)
– describe the relations a component model of an application is able to establish with the external

environment through inputs and outputs: the “Potential Model Input and Output Description”
(PMIOD)

The description XML files, i.e. the ADs and PMIODs, should be created by the component model
developer, either by hand or with the graphical user interface wizard.tcl available in
oasis4/util/gui, to provide information about the general characteristics and the potential
coupling interface of its code, but they are not used by the OASIS4 coupler.

• The XML configuration files are used to:

– configure the general characteristics of a coupled model run: the “Specific Coupling Configu-
ration” (SCC)

– configure the relations the component model will establish with the external environment
through inputs and outputs for a specific run: the Specific Model Input and Output Config-
uration (SMIOC).

The configuration XML files, i.e. the SCC and the SMIOCs, must be created by the coupled model
user, i.e. the person that builds the coupled model, either by hand or with the graphical user inter-
face oasis-gui.tcl available in oasis4/util/gui. They provide specifications about the
process management and the coupling and I/O exchanges of one particular coupled model and are
used by the OASIS4 coupler.

6.1 Introduction to XML concepts

Extensible Markup Language (XML) is a simple, very flexible text format. Originally designed to meet
the challenges of large-scale electronic publishing, XML is also playing an increasingly important role in
the exchange of a wide variety of data on the Web and elsewhere. An XML document is simply a file
which follows the XML format.
The purpose of a DTD or a Schema is to define the legal building blocks of an XML document. The
AD, SCC, PMIOD and SMIOC XML documents must follows the Schemas files ad.xsd, scc.xsd,
pmiod.xsd and smioc.xsd respectively, available in the directory oasis4/util/ xmlfiles.

38

6.2. THE APPLICATION DESCRIPTION (AD) 39

The xmllint command with the following options can be used to validate an XML file file.xml
against a Schema file file.xsd:
xmllint --noout --valid --postvalid --schema file.xsd file.xml

The building blocks of XML documents are Elements, Tags, and Attributes.

• Elements
Elements are the main building blocks of XML documents.
Examples of XML elements in pmiod.xsd are component or code. Elements can contain text,
other elements, or be empty.
The values of minOccurs and maxOccurs for an element in the Schema file indicate how many
times this element must occur in the corresponding XML file; if minOccurs and maxOccurs are
not specified, the element must appear once.

• Tags
Tags are used to markup elements.
In the XML file, a starting tag like <element name> marks up the beginning of an element, and an
ending tag like </element name> marks up the end of an element.
Example: <laboratory>Meteo-France</laboratory>
An empty element will appear as <element name />.

• Attributes
Attributes provide extra information about elements and are placed inside the start tag of an ele-
ment. As indicated in the Schema file, an attribute may be “required” (use=’required’) or “optional”
(use=’optional’).
Example: <grid local name=”AT31 2D”>
The name of the element is “grid”. The name of the attribute is “local name”. The value of the
attribute is “AT31 2D”.

6.2 The Application Description (AD)

The Application Description (AD) describes the general characteristics of one application. There is one
AD per application, i.e. per code which when compiled forms one executable. An application may contain
one or more component model. This description XML file should be created by the application developer,
either by hand or with the graphical user interface wizard.tcl available in oasis4/util/gui, to
provide information about the application general characteristics but it is not used by the OASIS4 coupler.
The AD Schema is given in oasis4/util/xmlfiles/ad.xsd. The AD file name must be
<application local name> ad.xml where <application local name> is the application name.
The AD contains the element ‘application’ which is composed of (see the ad.xsd):

• the application name: attribute ‘local name’, which should match argument appl name of PSMILe
call prism init (see section 5.1.1);

• a description of the application: attribute ‘long name’;
• the mode into which the application may be started: attribute ‘start mode’: ‘spawn’, ‘notspawn’ or

‘notspawn or spawn’ (see section 4.1);
• the mode into which the application may run: attribute ‘coupling mode’: ‘coupled’, ‘standalone’,

or ‘coupled or standalone’;
• the arguments with which the application may be launched: element ‘argument’;
• the total number of processes the application can run on: element ‘nbr procs’;
• the platforms on which the application has run: element ‘platform’;
• the list of components included in the application: element ‘component’; for each component:

40 CHAPTER 6. OASIS4 DESCRIPTION AND CONFIGURATION XML FILES

– the component name: attribute ‘local name’, which should match the argument comp name
of PSMILe call prism init comp (see section 5.1.2);

– a description of the component: attribute ‘long name’;
– whether or not this component is always active in the application: attribute ‘default’, either
true or false);

– the number of processes on which the component can run (element ‘nbr procs’).

6.3 The Potential Model Input and Output Description (PMIOD)

The Potential Model Input and Output Description (PMIOD) describes the relations a component model
is potentially able to establish with the external environment through inputs and outputs. There should be
one PMIOD per component model, written by the component developer, either by hand or with the graph-
ical user interface wizard.tcl available in oasis4/util/gui, to describe its component potential
coupling interface, but the PMIOD files are not used by the OASIS4 coupler.
The PMIOD Schema is given oasis4/util/xmlfiles/pmiod.xsd. The PMIOD file name should
be <application local name> <component local name> pmiod.xml where <application local name>
is the application name and <component local name> is the component name. Examples of PMIOD xml
files for the toy coupled model TOYOA4 can be found in
oasis4/examples/toyoa4/input.
The PMIOD contains 3 types of information:

• general characteristics of the component
• information on the grids
• information on the coupling/IO fields, also called ‘transient variables’

6.3.1 Component model general characteristics

This type of information gives an overview of the component model:

• the component name: attribute ‘local name’ of element ’component’, which should match the 2nd

argument of PSMILe call prism init comp(see section 5.1.2);
• a short general description of the component model: attribute ‘long name’;
• the name of the laboratory developing the component: element ‘laboratory’ in element ‘code’;
• the contact for additional information: element ‘contact’ in element ‘code’;
• the reference in the literature: element ‘documentation’ in element ‘code’;

6.3.2 Grids

This part contains information on the grids used by the component model. There might one or more grid
per component. All grids should be described by the component developer in the PMIOD.
Each grid (element ‘grid’) is described by:

• the grid name: attribute ‘local name’, which must match the 2nd argument grid name of PSMILe
call prism def grid (see section 5.3.1)

• for each global grid dimension: elements ‘indexing dimension’:

– the rank of the dimension: attribute ‘index’ which is of type integer
– whether or not the global grid is periodic is this dimension (e.g. a global grid is periodic in i if

index imax of the grid valid shape, see 5.3.1, is the neighbour of index i=1); attribute
‘periodic’ either true or false

6.3. THE POTENTIAL MODEL INPUT AND OUTPUT DESCRIPTION (PMIOD) 41

6.3.3 Coupling/IO fields (transient variables)

Each coupling/IO field possibly received or provided by the component model from/to its external envi-
ronment (another model or a disk file) through prism get or prism put call has to be described in
the component PMIOD by one element ‘transient’ with the following attributes and sub-elements:

• attribute ’local name’: the field name (which must match 2nd argument in the corresponding PSMILe
call prism def var , see section 5.4.1);

• attribute ‘long name’: gives a general description of the variable;
• element ‘transient standard name’: the standard variable names following the CF convention (if it

exist). This uniquely identifies the nature of the coupling/IO field.
In case of bundles, one element giving a generic name (e.g. temperature) plus one element per
bundle species giving a specific name for the species (e.g sea water temperature, air temperature,
snow temperature) need to be specified.

• element ‘physics’: a description of the coupling/IO field physical constraints:

– attribute ‘transient type’: the coupling/IO field physical type (either ‘single’ or ‘bundle’)
– element ‘physical units’: the coupling/IO field units
– element ‘valid min’: its physically acceptable minimum value
– element ‘valid max’: its physically acceptable maximum value
– element ‘nbr bundles’: for bundle variables, the number of bundles.

• element ‘numeric’, whose attribute ‘datatype’ provides the coupling/IO field numeric type: either
xs:real, xs:double, or xs:integer

• element ‘intent’, which describes if the coupling/IO field may be exported or imported, or both. The
sub-elements of ‘intent’ are:

– element ‘output’: if the coupling field can be exported through PSMILe prism put call (see
section 5.6.1), this element shall contain:
∗ element ‘minimal period’, which is the period at which the prism put is called in the

code (to define this period the developer may specify a number of seconds, minutes, hours,
days, months, and/or years, with respectively the sub-elements ‘nbr secs’, ‘nbr mins’,
‘nbr hours’, ‘nbr days’, ‘nbr months’, ‘nbr years’).

∗ element ‘source transformation’: the transformation that needs to be performed on the
output coupling/IO field in the source component PSMILe ; if needed, this element con-
tains only the element ‘source local transformation’ which in turn contains only the el-
ement ‘scattering’: the ‘scattering’ should be specified as true by the developer in the
PMIOD and should not be changed by the user in the SMIOC. It is performed on an
output coupling/IO field below the prism put by the source PSMILe . It is required
when grid information transfered to the PSMILe includes the masked points and when
the array transfered to the prism put API is a vector gathering only the non-masked
points. Note that this complex structure is used here to specify scattering to be coherent
with the ‘source transformation’ structure of the SMIOC file (see 6.5)

– element ‘input’: if the coupling/IO field can be imported through a prism get call (see
section 5.6.2), this element shall contain:
∗ element ‘minimal period’, which is the period at which the prism get is called in the

code (to define this period the developer may specify a number of seconds, minutes, hours,
days, months, and/or years, with respectively the sub-elements ‘nbr secs’, ‘nbr mins’,
‘nbr hours’, ‘nbr days’, ‘nbr months’, ‘nbr years’).

∗ element ‘target transformation’: the transformation that needs to be performed on the in-
put coupling/IO field in the target component PSMILe ; if needed, this element contains

42 CHAPTER 6. OASIS4 DESCRIPTION AND CONFIGURATION XML FILES

only the element ‘target local transformation’ which in turn contains only the element
‘gathering’: the ‘gathering’ should be specified as true by the developer in the PMIOD
and should not be changed by the user in the SMIOC. It is performed on an input cou-
pling/IO field below the prism get by the target PSMILe . It is required when the grid
information transfered to the PSMILe covers the whole grid (masked points included),
and when the array transfered through prism get API is a vector gathering only the
non-masked points. Note that this complex structure is used here to specify gathering to
be coherent with the ‘target transformation’ structure of the SMIOC file (see 6.5)

6.4 The Specific Coupling Configuration (SCC)

The Specific Coupling Configuration (SCC) contains the general characteristics and process management
information of one coupled model simulation. There must be one SCC per coupled model (or per stand-
alone application), named scc.xml, and written by the coupled model user either by hand or with the
graphical user interface oasis-gui.tcl available in oasis4/util/gui.

The SCC Schema is given in oasis4/util/xmlfiles/scc.xsd.

After the call to prism init in the application code, some of the SCC information is accessible directly
by the model, with specific PSMILe calls (see section 5.2). In many cases, coherence with the compiling
and running environment and scripts has to be ensured.

The SCC contains:

• some general information on the experiment defined by the user (element ‘experiment’):

– the experiment name (attribute ‘local name’);

– a description of the experiment (attribute ‘long name’);

– the mode into which all applications of the coupled model will be started (attribute ‘start mode’:
either spawn or not spawn, see section 4.1); this user’s choice, restricted by the possibili-
ties given in the ADs, determines the way the applications should be started in the run script.

– the number of processes used for the OASIS4 Driver/Transformer (element ‘nbr procs’ of
element ‘driver’) (this number must be equal to zero for a stand alone application)

– the start date of the experiment (element ‘start date’)

– the end date of the experiment (element ‘end date’)

• some general information on the current run, which therefore must be updated for each run of the
experiment (element ‘run’):

– the start date of the run (element ‘start date’); the start date has to correspond to the lower
bound of the time interval which is represented by the first time step of the run.

– the end date of the run (element ‘end date’); the end date has to correspond to the upper bound
of the time interval which is represented by the last time step of the run. Note that the end date
of the current run has to be used as start date for the subsequent run.

• the list of applications chosen by the user (elements ‘application’). For each chosen application:

– the application name (as given in the corresponding AD) (attribute ‘local name’) which must
match argument appl name of the PSMILe call prism init ;

– the application executable name, defined by the compiling environment (attribute ‘executable name’)
(used only in spawn mode as argument of the MPI Comm Spawn Multiple).

– whether the application stdout shall be redirected or not (user’s choice) (attribute ‘redirect’,
either true or false)

6.5. THE SPECIFIC MODEL INPUT AND OUTPUT CONFIGURATION (SMIOC) 43

– a list of launching arguments (that should be chosen in the list given in the corresponding AD;
used only in spawn mode as argument of the MPI Comm Spawn Multiple) (elements
‘argument’);

– a list of hosts (elements ‘host’); for each host:
∗ the host name (attribute ‘local name’) (used only in spawn mode as argument of the
MPI Comm Spawn Multiple).

∗ the number of processes to run this host (element ‘nbr procs’) (used in the not spawn
method to split the global communicator; for the spawn method, used as argument in
MPI Comm Spawn Multiple).

– the list of components activated (elements ‘component’, that should be chosen in the list given
in the corresponding AD); for each component:
∗ the component name (as given in the corresponding AD) (attribute ‘local name’), which

must match the argument comp name of PSMILe call prism init comp (see 5.1.2);
∗ the lists of ranks in the total number of processes for the application (elements ‘ranks’):

The ranks are the numbers of the application processes (starting with zero) used to run the
component model. They are given as lists of 3 numbers giving, in each list, a minimum
value, a maximum value, and an increment value. For example, if processes numbered 0
to 31 are used to run a component model, this can be describe with one rank list (0, 31,
1); if processes 0 to 2 and 5 to 7 are used, this can be described with two rank lists (0, 2,
1) and (5, 7, 1).

6.5 The Specific Model Input and Output Configuration (SMIOC)

The Specific Model Input and Output Configuration (SMIOC) specifies the relations the component model
will establish at run time with the external environment through inputs and outputs for a specific run. It
must be generated by the user for each component model based on the corresponding PMIOD information,
either by hand or with the graphical user interface oasis-gui.tcl available in oasis4/util/gui.
The SMIOC Schema is given in oasis4/util/xmlfiles/smioc.xsd. The SMIOC file name
must be <application local name> <component local name> smioc.xml where
<application local name> is the application ‘local name attribute and <component local name> is the
component ‘local name’ attribute in the scc.xml file. Examples of SMIOC xml files for the toy coupled
model TOYOA4 can be found in oasis4/examples/toyoa4/input.
The SMIOC may contain 3 types of information detailed in the next paragraphs:

• general characteristics of the component, as described in the corresponding PMIOD
• information on the grids
• information on the coupling/IO fields, also called ‘transient variables’

Part of this information is used to define attributes of the I/O NetCDF files but is not mandatory for the
proper execution of the coupled model per se; if it is not specified in the SMIOC, it will just be missing in
the I/O files. In the paragraphs below, it is detailed which information is mandatory and which is not.

6.5.1 Component model general characteristics

The SMIOC may repeat the description information provided about the component model general charac-
teristics in the corresponding PMIOD (see section 6.3.1); however, the only mandatory information is the
component name (see below).
The component model general characteristics are:

• the component name: attribute ‘local name’ of element ’component’, which should match the 2nd

argument of PSMILe call prism init comp(see section 5.1.2);

44 CHAPTER 6. OASIS4 DESCRIPTION AND CONFIGURATION XML FILES

• a short general description of the component model: attribute ‘long name’ (optional) ;
• the name of the laboratory developing the component: element ‘laboratory’ in element ‘code’ (op-

tional) ;
• the contact for additional information: element ‘contact’ in element ‘code’ (optional) ;
• the reference in the literature: element ‘documentation’ in element ‘code’ (optional) ;

6.5.2 Grids

This part contains information on the grids effectively used during the run by the component model, based
on the description done in the corresponding PMIOD file. There might one or more grids per component
as described in the corresponding PMIOD.
Each grid (element’grid’) is described by:

• the grid name: attribute ‘local name’, which must match the 2nd argument grid name of PSMILe
call prism def grid (see section 5.3.1) (mandatory)

• for each global grid dimension: elements ‘indexing dimension’ (mandatory for the dimensions that
are effectively periodic):

– the rank of the dimension: attribute ‘index’ which is of type integer
– whether or not the grid is periodic is this dimension: attribute ‘periodic’ either true or false

6.5.3 Coupling/IO fields (transient variables)

Each coupling/IO field effectively received or provided by the component model from/to its external en-
vironment (another model or a disk file) through prism get or prism put call in the component
code (see sections 5.6.1 and 5.6.2) must be specified by one element ‘transient’ which has the following
attributes and sub-elements:

• attribute ‘local name’: the field name, which must match 2nd argument in the corresponding PSMILe
call prism def var (see sections 5.4.1); (mandatory);

• attribute ‘long name’: gives a general description of the variable; (optional)
• element ‘transient standard name’: one or more PRISM standard names following the CF conven-

tion (if they exist); see section 6.3.3 for details; (mandatory)
• element ‘physics’: a description of the coupling/IO field physical constraints; see section 6.3.3 for

details; (optional)
• element ‘numeric’, whose attribute ‘datatype’ gives the coupling/IO field numeric type (either
xs:real, xs:double, or xs:integer); (mandatory)

• element ‘intent’, which describes if the coupling/IO field will be exported or imported, or both
(mandatory). This element contains in its sub-elements all coupling and I/O information (source
and/or target, frequency, transformations, interpolation, etc.). The sub-elements of ‘intent’ are:

– element ‘output’: When the coupling/IO field is exported through a prism put , this export
must be described in one or more elements ‘output’. The element ‘output’ is described in more
details in section 6.5.4.

– element ‘input’: When the coupling/IO field is imported through a prism get , this import
must be described in one element ‘input’. The element ‘input’ is described in more details in
section 6.5.5.

6.5.4 The ‘output’ element

If the coupling/IO field is exported through a prism put in the component code, it can be effectively be
sent to none, one, or many targets, each target being described in one element ‘ouput’. A more detailed

6.5. THE SPECIFIC MODEL INPUT AND OUTPUT CONFIGURATION (SMIOC) 45

description of element ‘output’, its attributes and sub-elements is given here.

1. attribute ‘transi out name’ (mandatory) : a symbolic name defined by the user for that specific
‘output’ element.

2. element ‘exchange date’ (mandatory) : The dates at which the coupling or I/O will effectively be
performed. To express these dates, the user has to specify the following sub-element:

• element ‘period’ (mandatory): The coupling or I/O is performed with a fixed period. To define
this period, the user must specify a number of seconds, minutes, hours, days, months, and/or
years, with respectively the sub-elements ‘second’, ‘minute’, ‘hours’, ‘day’, ‘month’, ‘year’
(all optional but at least one must be specified).

3. element ‘corresp transi in name’ (mandatory) : The symbolic name of the corresponding input
coupling/IO field origin (attribute ‘transi in name’ of element ‘origin’ of element ‘input’) in the
target component or target file . This defines an exchange between a source and a target component
or file. Coherence has to be ensured, i.e. the value of the current output ‘transi out name’ attribute
(see above) has to be specified in the ‘corresp transi out name’ element of the corresponding input
coupling field origin (see also section 6.5.5). Note that this coherence is automatically ensured when
using the graphical user interface oasis-gui.tcl (available in oasis4/util/gui) to create
the SMIOC files.

4. element ‘file’ or element ‘component name’ (one or the other mandatory): The target file descrip-
tion (I/O) or the target component ‘local name’ attribute (coupling). The ‘file’ element is described
in more detail in section 6.5.7.

5. element ‘lag’ (optional): The number of prism put periods1 to add to the output coupling field
prism put date and date bounds to match the corresponding input coupling field prism get
date in the target component (see also 5.6.4).

6. element ‘source transformation’ (optional) : The transformations performed on the output cou-
pling/IO field in the source component PSMILe .

• element ‘source time operation’ (optional) : for each grid point, the output coupling/IO field
can be averaged (taverage) or accumulated (accumul) over the last coupling period by
the source PSMILe and the result is transfered. Note that the average or the accumulation is
simply done over the arrays provided as argument to the prism put calls, not weighted by
the time interval between these calls.

• element ‘statistics’ (optional) : different statistics (minimum, maximum, integral) are calcu-
lated for the field on the masked points, and/or on the not masked points, and/or on all points
of the output coupling/IO field, if respectively the sub-elements ‘masked points’, and/or ‘not-
masked points’, and/or ‘all points’ are specified with value ’on’ or ’off’. This is done be-
low the prism put by the source PSMILe (after the time operations described in element
‘source time operation’ if any). These statistics are printed to the PSMILe log file for infor-
mation only; they do not transform the output coupling/IO field.

• element ‘source local transformation’ (optional) : the following local transformations may be
performed on the output coupling/IO field by the source PSMILe :

– element ‘scattering’: the ‘scattering’ should be specified by the developer in the PMIOD
and should not be changed by the user in the SMIOC. If ‘scattering’ is true, scattering is
performed on an output coupling/IO field below the prism put by the source PSMILe
. It is required when grid information transfered to the PSMILe includes the masked
points and when the array transfered to the prism put API is a vector gathering only
the non-masked points.

1A prism put period is the time between the prism put date bounds; e.g. for a lag of 1, the time added to the
prism put date and date bounds arguments would be once the time difference between the associated date bounds.

46 CHAPTER 6. OASIS4 DESCRIPTION AND CONFIGURATION XML FILES

– element ‘mult scalar’ (optional) : Each grid point coupling/IO field value is multiplied by
the scalar specified in this element.

– element ‘add scalar’ (optional) : The scalar specified in this element is added to each grid
point coupling/IO field value.

When these two elements are specified, the multiplication is performed before the addi-
tion.

7. element ‘debug mode’ (optional) : either true or false; if it is true, the output coupling/IO
field is automatically also written to a file below the prism put . If there is a lag for this field (see
above), the time in the debug file is the date argument of the prism put call + lag. The field
written to the restart file is also written to the prism put debug file.

6.5.5 The ‘input’ element

If the coupling/IO field is imported through a prism get in the component code, the user will have
to describe one source for that field in the SMIOC. A more detailed description of element ‘input’, its
attributes and sub-elements is given here.

1. element ‘exchange date’ (mandatory) : The dates at which the coupling or I/O will effectively be
performed (see ‘exchange date’ in ‘output’ in section 6.5.4).

2. element ‘origin’ (mandatory): In the current OASIS4 version, an input coupling/IO field may come
only from one origin being described by an element ‘origin’ which contains the following attributes
and sub-elements:

• attribute ‘transi in name’ (mandatory) : a symbolic name defined for that specific ‘origin’
element.

• element ‘corresp transi out name’ (mandatory) : The symbolic name of the corresponding
output coupling/IO field (attribute ‘transi out name’ of element ‘output’) in the source com-
ponent or source file. This defines an exchange between a source and a target component or
file. Coherence has to be ensured, i.e. the value of the current input ‘transi in name’ attribute
has to be specified in the ‘corres transi in name’ element of the corresponding output coupling
field (see also section 6.5.4). Note that this coherence is automatically ensured when using the
graphical user interface oasis-gui.tcl (available in oasis4/util/gui) for creating
the SMIOC files.

• element ‘file’ or ‘component name’ (one or the other mandatory) : The source file descrip-
tion (I/O) or the source component ‘local name’ attribute (coupling). The ‘file’ element is
described in more detail in section 6.5.7.

• element ‘middle transformation’ (optional): The transformations which link the source and
the target.

– element ‘interpolation’ (mandatory): The interpolation to be performed on the output
coupling field to express it on the target model grid. This element is described in more
detail in section 6.5.6.

3. element ‘target transformation’ (optional) : The transformations performed on the input coupling/IO
field in the target component PSMILe .

• element ‘target local transformation’ (optional) : The local transformations performed on the
input coupling/IO field.

– element ‘gathering’ (optional) : The ‘gathering’ should specified by the developer in the
PMIOD and should be kept as is in the SMIOC. If ‘gathering’ is true, it is performed on
an input coupling/IO field below the prism get by the target PSMILe . It is required
when the grid information transfered to the PSMILe covers the whole grid (masked points

6.5. THE SPECIFIC MODEL INPUT AND OUTPUT CONFIGURATION (SMIOC) 47

included), and when the array transfered through prism get API is a vector gathering
only the non-masked points.

– element ‘mult scalar’ (optional) : Each grid point coupling/IO field value is multiplied by
the scalar specified in this element.

– element ‘add scalar’ (optional) : The scalar specified in this element is added to each grid
point coupling/IO field value.
When both operations are chosen, the multiplication is performed before the addition.

• element ‘target time operation’ (optional) : Target time interpolation is supported below the
prism get only for IO data2. The types of time interpolation are the nearest neighbour
‘time nneighbour’ and linear time interpolation between the two closest timestamps ‘time linear’
in the input file.

• element ‘statistics’ (optional) : see section 6.5.4.

4. element ‘debug mode’ (optional) : either true or false; when it is true, the input coupling/IO
field is automatically written to a file below the prism get . Note that if there is a lag, the field
read from the restart file is written to the prism get debug file (but not to the prism put debug
file).

6.5.6 The element ‘interpolation’

The element ‘interpolation’ is a sub-element of ‘middle transformation’, which is a sub-element of ‘ori-
gin’, which is a sub-element of ‘input’. The interpolation is needed to express the coupling field on the
target model grid3.
As all coupling arrays are given on a 3D grid, the user has to choose among the following:

• ‘interp3D’: A full 3D interpolation.
• ‘(interp2D, interp1D)’: The same 2D interpolation for all vertical levels followed by a 1D interpo-

lation in the vertical. This type of interpolation can be used for all grids which vertical dimension
can be expressed as z(k), i.e. for all grid types currently supported besides PRISM gridless
(see table 5.8). The mask may vary with depth. Currently, the combinations implemented are
nneighbour2D and none, bilinear and none, bicubic and none, conservativ2D
and none, nneighbour2D and linear, bilinear and linear.

Note that the interpolation will provide values interpolated from the source field for all target grid cells
except for the following ones:

• the target cell does not intersect any part of the source grid domain; for those cells, the target field
keeps the same value as before the call to prism get ;

• the target cell is masked; for those cells, the target field keeps the same value as before the call to
prism get ;

• the target cell is not masked, but the interpolation as requested in the SMIOC file cannot be per-
formed (see for example the element ‘novalue’ here below); for those cells, the target field will take
the psmile dundef value (=-280177.).

The elements ‘interp3D’, ‘interp2D’, ‘interp1D’, are separately described here after:

2This feature is not essential for coupling data as each prism put has a date and date bounds as arguments. Therefore, a
prism put and a prism getwill be matched if the prism get date falls into the date bounds of the prism put . Allowing
for time interpolation, e.g. allowing a prism get to match with an averaged value of the two prism put nearest neighbour
in time, could lead to deadlocks as the model performing the prism get would be blocked until the two prism put nearest
neighbour in time are performed. We rely only the date bounds to match prism put and prism get having non matching
dates.

3In the current OASIS4 version, interpolation is available only for coupling fields and not for I/O fields read/written from/to
a file.

48 CHAPTER 6. OASIS4 DESCRIPTION AND CONFIGURATION XML FILES

1. element ‘interp3D’: For 3D interpolation, the user has to choose among the following methods:

• element ‘nneighbour3D’: A 3D nearest neighbour algorithm; the parameters are:
– element ‘nbr neighbours’ (mandatory): the number of source points used to calculate

each target point
– element ‘gaussian variance’ (optional) : the variance of the Gaussian function used to

weight the neighbours, if any.
– element ‘para search’ (optional) :

∗ global: global search which identifies neighbours across source domain boundaries
on neighbouring processing elements if necessary (default).

∗ local: a local less expensive neighbourhood search; the results will be affected by
the source grid partitioning.

– element ‘if masked’ (optional) : only novalue is currently available for ‘nneighbour3D’
∗ novalue: if some of the nbr neighbours neighbours are masked, psmile undef

value is given to that target point.
• element ‘trilinear’: A trilinear algorithm; the parameters are:

– element ‘para search’ (optional): see element ‘nneighbour3D’ above.
– element ‘if masked’ (mandatory): either novalue, tneighbour, or nneighbour.

∗ novalue: if some of the 8 trilinear neighbours are masked, psmile undef value
is given to that target point;

∗ tneighbour: if some of the 8 trilinear neighbours are masked, the non-masked
points among those points are used for calculating a weighted average; if the nbr neighbours
neighbours are masked, psmile undef value is given to that target point;

∗ nneighbour: if some of the 8 trilinear neighbours are masked, the non-masked
points among those points are used for calculating a weighted average; if the nbr neighbours
neighbours are masked, the non-masked nearest neighbour is used.

• element ‘user3D’: the set of weights and addresses used for the remapping are pre-defined by
the user and are stored in a file that will be read by the PSMILe library (see 4.3.3 for more
details). For this remapping, only the file containing the weights and addresses defined by the
user is needed:

– element ‘file’ (mandatory) : the file containing the user-defined weights and addresses
(see section 6.5.7 for the content of this element)

2. element ‘interp2D’: For 2D interpolation, the following methods can be chosen:

• element ‘nneighbour2D’: A 2D nearest neighbour algorithm; the parameters are:
– elements ‘nbr neighbours’, ’gaussian variance’, ‘para search’, ‘if masked’: see element

‘nneighbour3D’ above
• element ‘bilinear’: A bilinear algorithm; for the parameters are:

– element ‘para search’ (optional) : see element ‘nneighbour3D’ above.
– element ‘if masked’: either novalue, tneighbour, or nneighbour.

∗ novalue: if some of the 4 bilinear neighbours are masked, psmile undef value
is given to that target point;

∗ tneighbour: if some of the 4 bilinear neighbours are masked, the non-masked
points among those points are used for calculating a weighted average; if the nbr neighbours
neighbours are masked, psmile undef value is given to that target point;

∗ nneighbour: if some of the 4 bilinear neighbours are masked, the non-masked
points among those points are used for calculating a weighted average; if the nbr neighbours
neighbours are masked, the non-masked nearest neighbour is used.

6.5. THE SPECIFIC MODEL INPUT AND OUTPUT CONFIGURATION (SMIOC) 49

• element ‘bicubic’: A bicubic algorithm, the parameters are:
– element ‘bicubic method’ (mandatory) : The bicubic method: either gradient (the 4

enclosing source neighbour values and gradient values based on the 12 additional enclos-
ing neighbours are used), or sixteen (the sixteen enclosing source neighbour values are
used -this method assumes that the source points are located 4 by 4 at the same latitude).

– element ‘para search’ (optional) : see element ‘nneighbour3D’ above.
– element ‘if masked’: : either novalue, tneighbour, or nneighbour.

∗ novalue: if some of the 16 bicubic neighbours are masked, psmile undef value
is given to that target point;

∗ tneighbour: if some of the 16 bicubic neighbours are masked, the non-masked
points among those points are used for calculating a weighted average; if the nbr neighbours
neighbours are masked, psmile undef value is given to that target point;

∗ nneighbour: if some of the 16 bicubic neighbours are masked, the non-masked
points among those points are used for calculating a weighted average; if the nbr neighbours
neighbours are masked, the non-masked nearest neighbour is used.

• element ‘conservativ2D’: A 2D conservative remapping is applied: the weight of a source
cell is proportional to the target cell area intersected by the source cell. See section 4.3.1 for
details.
The 2D conservative remapping parameters are:

– element ‘order’ (mandatory) : Currently, the only possible value is ‘first’ as only the first
order conservative remapping is available.

– element ‘normalisation2D’ (optional): 2D normalisation options:
∗ element ‘methodnorm2D’ (mandatory): the value of the normalisation method can

be:
· fracarea: The sum of the non-masked source cell intersected areas is used to

normalise each target cell field value: the flux is not locally conserved, but the flux
value itself is reasonable.

· destarea: The total target cell area is used to normalise each target cell field
value even if it only partly intersects non-masked source grid cells: local flux con-
servation is ensured, but unreasonable flux values may result.

· none: No normalisation is applied.
– element ‘para search’ (optional) : see element ‘nneighbour3D’ above.

3. element ‘interp1D’ For 1D interpolations, the following methods can be chosen:

• element ‘linear’:
A linear algorithm is applied.

• element ‘none’:
Interpolation method that can be chosen for dimension with extent of 1. For example, to
interpolate a field of Sea Surface Temperature dimensioned (i,j,k) with extent of k being 1,
the interpolation type can be ‘(interp2D, interp1D)’ and ‘none’ should be chosen for the ‘in-
terp1D’.

6.5.7 The ‘file’ element

The ‘file element is composed of the following sub-elements:

• element ‘name’: a character string used to build the file name.
• element ‘suffix’: either true or false. When ‘suffix’ is false (by default), the file name is com-

posed only of element ‘name’; when it is true, the file name is composed of element ‘name’ to

50 CHAPTER 6. OASIS4 DESCRIPTION AND CONFIGURATION XML FILES

which the PRISM suffix for dates is added. When the file is opened for writing, the suffix will
be “ out.<job startdate>.nc”, where <job startdate> is the start date of the job. When the file is
opened for reading, the suffix should be “ in.<start date>.nc”, where <start date> is the date of
the first time stamp in that file. When reading an input from a file, the PSMILe will automatically
match the requested date of the input with the appropiate file if it falls into the time interval covered
by that file. The <job startdate> and <start date> must be written according to the ISO format
yyyy-mm-ddTHH:MM:SS. The date/time string in the file name must have to format yyyy-mm-
ddTHH.MM.SS since the colon is already used in other context for file systems. An example of an
input file with ‘suffix’ = false is SONSHLDO.nc available in oasis4/example/toyoa4/data).

• element ‘format’: the format of the file; only NetCDF (mpp netcdf) supported for now.
• element ‘io mode’: either iosingle (by default) or distributed. The mode iosingle

means that the whole file is written or read only by the master process; distributed means that
each process writes or reads its part of the field to a different partial file. Note that if the PSMILe is
linked against the parallel NetCDF library Li et al. (2003), the parallel mode will automatically
be used; in this case each process writes its part of the field to one parallel file (see also our remarks
about parallel NetCDF on page 28).

• element ‘packing’: packing mode , either 1, 2, 4 or 8 (for NetCDF format only)
• element ‘scaling’: if present, the field read from the file are multiplied in the PSMILe by the

‘scaling’ value (1.0 by default) (for NetCDF format only)
• element ‘adding’: if present, the ‘adding’ value (0.0 by default) is added to the field read from the

file (for NetCDF format only)
• element ‘fill value’: on output, specifies the value given to grid points for which no meaningfull

value was calculated; on input, specifies the value given in the file to undefined or missing data.

Chapter 7

Compiling and running OASIS4 and
TOYOA4

This chapter describe how to compile and run the OASIS4 coupler and its toy coupled model “TOYOA4”.
It also describes how to get internal CPU and elapse time statistics for thePSMILe library and the
Driver/Transformer.

7.1 Introduction

The list of platforms onto which OASIS4 was successfully compiled and run is avaliable on OASIS web
site (https://verc.enes.org/models/software-tools/oasis/) under the ‘Technical’ tab on the ‘Tested and vali-
dated platforms for OASIS4’ page.

7.2 Compiling OASIS4 and its associated PSMIle library

Compiling is done using the top makefile TopMakefileOasis4, platform dependent header files (see
section 7.2.1) and low-level makefiles in each source directory. During compilation, the ARCHDIR direc-
tory specified in the header file is created. After successful compilation, resulting executables are found
in $ARCHDIR/bin, libraries in $ARCHDIR/lib and object and module files in $ARCHDIR/build.

7.2.1 Compilation with TopMakefileOasis4

Compiling OASIS4 using the top makefile TopMakefileOasis4 is done in directory
oasis4/util/make dir. TopMakefileOasis4must be completed with a header file make.yours
specific to the compiling platform used and specified in oasis4/util/make dir/make.inc. One
of the files make.pgi cerfacs, make.sx frontend or make.aix can by used as a template. The
root of the OASIS4 tree can be anywere and must be set in the variable COUPLE in the make.yours file.
The choice of MPI1 or MPI2 is also done in the make.yours file (see CHAN therein).

The following commands are available:

• make -f TopMakefileOasis4

compiles OASIS4 libraries common oa4, psmile oa4 and mpp io and creates OASIS4 Driver/Transformer
executable oasis4.MPI[1/2].x ;

• make help -f TopMakefileOasis4

displays help information ;

51

52 CHAPTER 7. COMPILING AND RUNNING OASIS4 AND TOYOA4

• make realclean -f TopMakefileOasis4:

cleans OASIS4 Driver/Transformer executable and libraries.

Log and error messages from compilation are saved in the files COMP.log and COMP.err in make dir.

For not compiling the mpp io library, the variable PSMILE WITH IO must be left undefined in the file
make.yours .

7.2.2 Some details on the compilation

• Other librairies needed

The following librairies (not provided with the OASIS4 sources) are required:

– Message Passing Interface, MPI1 Snir et al. (1998) or MPI2 Gropp et al. (1998) (MPICH,
openMPI, LAM-MPI, SGI native MPI, NEC SX native MPI, and SCAMPI were successfully
tested)

– NetCDF Version 3.4 or higher Eaton et al. (2003) or parallel NetCDF Li et al. (2003) (see page
5.6)

– libxml Version 2.6.5 or higher 1

• CPP keys

The following CPP keys can be activated:
(see CPPDEF in oasis4/util/make dir/make.xxx files)

– PSMILE WITH IO: to make use of the IO capability of PSMILe

– PRISM WITH MPI1: This option has to be chosen if the available MPI library supports only
MPI1 standard, like mpich1.2.*. Correct behaviour is ensured only on 32 bit architectures.
This key is mutually exclusive with the PRISM WITH MPI2 key.

– PRISM WITH MPI2: When the available MPI2 library supports the MPI2 standard, this op-
tion should be chosen instead (in particular on 64-bit architectures). This key is mutually
exclusive with the PRISM WITH MPI1 key.

– DONT HAVE STDMPI2: This key has to used in conjunction with PRISM WITH MPI2
for partial MPI2 implementation (e.g. on IBM Power 6 and with SCALI MPI). If activated,
the MPI2 spawn functionality MPI Comm spawn multiple will not be used. MPI Finalized,
MPI Allreduce with MPI IN PLACE as first argument, and MPI Waitall with
MPI STATUSES IGNORE as 3rd argument will not be used either. Note that in this case, the
element start mode has to be not spawn in the SCC.xml file.

– PRISM LAM: if LAM-MPI library is used.

– DONT HAVE ERRORCODES IGNORE: As a workaround for some MPI2 implementations
that do not support the MPI parameter MPI ERRORCODES IGNORE (as before last argu-
ment to MPI Comm spawn multiple call) this key has to be activated. If at all, it is only
needed in conjunction with PRISM WITH MPI2.

– SX: To achieve better performance on vector architecture this option should be set.

– VERBOSE: Useful for debugging purposes, activation this key will cause the library and driver
routines to run in verbose mode. Since all output is immediately flushed to standard output
this will significantly decrease performance and is therefore not recommended for production
runs.

– DEBUG: Mainly used by OASIS4 developers. Activating this option will cause the driver
and library to write out additional output for debugging purpose. This output is immediately
flushed to standard output and will therefore decrease performance.

1http://www.w3.org/XML

7.2. COMPILING OASIS4 AND ITS ASSOCIATED PSMILE LIBRARY 53

– PRISM ASSERTION: Mainly used by OASIS4 developers; the code encapsulated by this cpp
key will perform additional internal consistency checks and will provide additional informa-
tion for debugging.

– NAG COMPILER: Mandatory to compile and run with the NAG compiler.

7.2.3 Remarks and known problems

• LAM-MPI with the spawn approach

The usage of MPI Comm Spawn Multiple is the most portable way if MPI processes shall be
dynamically spawned on multiple hosts. Therefore, there is a reserved predefined key ”host” for
the info argument, which specifies the value of the host name, in the MPI2 standard. Nevertheless
this is currently not supported by LAM-MPI. Therefore, to use LAM-MPI, it is required to use the
CPP key PRISM LAM. In this case, LAM-MPI MPI Comm Spawn Multiple fills the proces-
sors according to the list given in the lam.config file used by the lamboot process (see example in
https://oasistrac.cerfacs.fr/browser/trunk/prism/dev ex/examples/simple-mg),
using always all processors on a given node. For example, 1 Driver/Transformer process and 4 pro-
cesses for the ocean and the atmosphere models would be scheduled on three 4-CPU hosts like the
following: the Driver/Transformer would be on host 1, the ocean model would have 3 processes on
host1 and 1 process on host 2, and the atmosphere model would have 3 processes run on host 2 and
1 on host 3, which of course is not optimal.

With MPI Comm Spawn , LAM-MPI would be more more flexible regarding the spawning of pro-
cesses. For OASIS4 this is not an option since MPI Comm Spawn Multiple is required for

– starting multiple binaries (not several applications); this may be required for an heterogenous
cluster;

– starting same binary with a multiple set of arguments;

– placing multiple binaries in the same MPI COMM WORLD. It is intended here to place the
MPI processes of an application into a MPI COMM WORLD which is different for each
application (as in this case, the applications are not required to change the application internal
communicators).

Therefore, the spawn approach is not recommended with LAM-MPI. The not spawn approach
(see sections 4.1) should be prefered if possible.

• MPICH

Since MPI1 is not designed for 64 Bit architectures the default MPICH.1.2.* implementation will
not work on 64 Bit systems for OASIS4 and PSMILe. It could work on IA64 if there was no use
of functions with INTEGER arguments representing an address or a displacement as is the case in
OASIS4 (on IA64 architectures these integers must be 64 bits or “long” in C language; they are
“int” in MPICH) .

• Portland Group Compiler

The Portland Group Compiler Version 5.2 produces an internal compiler error for the main routine
of OASIS4.

For the Portland Group Compiler Version 6.0, the debug option (-g) must be used. No particular
option is needed for version 6.1 .

The Portland Group C compiler produces an error. In particular, with PGCC 8.0.5 and 9.0.4,
an error was observed when compiling parser.h included in the C routine for XML reading
sasa c xml.c. Use of GNU C compiler gcc is recommended instead (see CC in
oasis4/util/make dir/make.xxx files.

• Intel Fortran Compiler

54 CHAPTER 7. COMPILING AND RUNNING OASIS4 AND TOYOA4

To successfully compile OASIS4, Intel Fortran Compiler version 11.1.046 or higher is required (a
problem with pointers pointing on pointers was detected with previous versions).

7.3 Compiling and running TOYOA4

TOYOA4, which sources, input files, data and running script are in directory oasis4/examples/toyoa4,
is a toy coupled model providing a practical example of the coupling and I/O exchanges that can occur
in a real coupled model. It is a ‘toy’ coupled model in the sense that the components atmoa4, oceoa4,
and lanoa4 do not contain any real physics or dynamics but their coupling and I/O exchanges are realistic
(i.e. the grids and the coupling fields have realistic dimensions and the exchanges and transformations
performed by OASIS4 are realistic). NetCDF data files needed for running TOYOA4 are found in direc-
tory /data. The description and configuration XML files are found in directory /input. Note that the
toy model available in oasis4/examples/tutorial1 reproduces ping-pong exchanges between
model1 and model2 (see the readme tutorial1.pdf therein); this is probably the simplest toy model
available to start learning about OASIS4.

Compiling is done with the Makefile in this directory. Running is done by adapting the “User’s section”
of the running script oasis4/util/runscripts/run examples all and by invoking it from the
oasis4/examples/toyoa4 directory (i.e. with ../../util/runscripts/run examples all).
The working directory rundir defined in run examples all is created; all files and executables
needed for running are first copied into this working directory and the TOYOA4 coupled model is exe-
cuted.

oceoa4_ocean

(4 hrs)

lanoa4_land

(2hrs)

atmoa4_atmos

(1 hr)

SOSSTSST

SISUTESU

LARUNOFF

SORUNOFF

SONSHLDO

CONSFTOT COSENHFL

SOSENHFL

COWATFLU

SOWAFLDO

LAWATFLX

OCWINSTS

ATWINSTS

SONSHLDO.nc

LARUNOFF.nc

12 hrs
trilinear

12 hrs

12 hrs
time accumul

trilinear

2 hrs
time accumul

12 hrs
time ave

add_scalar -273
trilinear

statistics

2 hrs

8 hrs
time accumul

trilinear
12 hrs

time accumul

Figure 7.1: TOYOA4 toy coupled model coupling and I/O configuration

7.4. GETTING SOME INTERNAL CPU AND ELAPSE TIME STATISTICS 55

Figure 7.1 illustrates the coupling and I/O exchanges occuring between the 3 toy component models
atmoa4, oceoa4, and lanoa4.
Both atmoa4 and lanoa4 work on a T31 Gaussian grid, but their parallel partitioning is a function of their
number of processes which can be different. The third model, oceoa4, is not parallel and uses a real ocean
model stretched and rotated grid with spherical polar coordinates of 182 x 149 grid points.
All coupling and I/O fields are scalar fields. The model atmoa4 declares 1 input field SISUTESU,
and 4 output field CONSFTOT, COSENHFL, COWATFLU, ATWINSTS as is listed in its PMIOD file
atmoa4 atmos pmiod.xml. The model lanoa4 declares 2 input fields LAWATFLX and SOSENHFL,
and 1 output field LARUNOFF as is listed in its PMIOD file lanoa4 land pmiod.xml. The model
oceoa4 declares 4 input fields SONSHLDO, SOWAFLDO, SORUNOFF and OCWINSTS, and 1 output
field SOSSTSST.
At run-time, the OASIS4 Driver/Transformer and the PSMILe model interface linked to the component
models act according to the specifications written by the user in the configuration SMIOC XML files.
In the atmoa4 SMIOC file atmoa4 atmos smioc.xml, it is specified that ATWINSTS will be sent to
oceoa4, COSENHFL to lanoa4, COWATFLU both to oceoa4 and lanoa4, while CONSFTOT is not sent at
all; it is also specified that SISUTESU will come from oceoa4. The lanoa4 SMIOC file
lanoa4 land smioc.xml specifies that LARUNOFF will both go to oceoa4 and be written to a file
LARUNOFF.nc and that LAWATFLX and SOSENHFL will be received from atmoa4. Finally, in the
oceoa4 SMIOC file oceoa4 ocean smioc.xml, it is specified that OCWINSTS and SOWAFLDO will
be received from atmoa4, SORUNOFF from lanoa4, while SONSHLDOwill be read from a file SONSHLDO.nc;
SOSSTSST will be sent to atmoa4.
Different operations are performed by the PSMILe model interface on the coupling or I/O fields such as
statistics, time accumulation time averaging, as specified in the SMIOC files. The exchanges of the cou-
pling fields between atmoa4 and lanoa4 (and vice-versa) are direct, involving possibly some repartitioning
if their parallel partitioning are different. As atmoa4 and oceoa4 do not have the same grid, their exchanges
of coupling fields go through the Transformer (not illustrated on figure 7.1) where a linear interpolation is
performed. The different coupling and I/O periods are also specified in the different SMIOC files.
TOYOA4 also illustrates the use of a coupling restart file for field COSENHFL for which a positive lag of 1
is defined. The first time TOYOA4 is run, the variable run should be set to start in run examples all.
In that case, the file scc.xml.start is copied in scc.xml and used, TOYOA4 is run for 3 days
starting January 1st 2000, and the first field COSENHFL received by lanoa4 comes from the restart file
COSENHFL atmoa4 atmos rst.2000-01-01T00 00 00.nc; at the end of the run, the restart file
for the next run, COSENHFL atmoa4 atmos rst.2000-01-04T00 00 00.nc, is created by the
last call to prism put for COSENHFL in atmoa4. A next run of 3 days starting January 4th 2000 can then
be run by changing run=restart in run example all and running it again.
A successfull execution of TOYOA4 (with run set to start in run examples all) produces files
that can be compared to results in oasis4/examples/toyoa4/outdata. In particular, files con-
taining standard output from the different components (e.g. atmoa4.0, lanoa4.0, oceoa4.0) should end
with lines like

--- Note: MPI_Finalize was called ---
--- from prism_terminate. ---

7.4 Getting some internal CPU and elapse time statistics

This section describes how to get some CPU and elapse time statistics for the internal PSMILe and
Driver/Transformer routines using the routines in module oasis4/lib/common oa4/src/
psmile timer.F90. To use this functionality, one has to:

56 CHAPTER 7. COMPILING AND RUNNING OASIS4 AND TOYOA4

• call psmile timer init at the beginning of the code with, as arguments, the number of mea-
sures, a vector giving a label for each measure, the application name, the name of the file where
the statistics will be printed out, and the local communicator of the application (see an example in
prism init.F90)

• for each x measure of time, call psmile timer start(x) and psmile timer stop(x); if
these two routines are called multiple times for the same x, the time will get accumulated

• call psmile timeprint at the end of the run (see example in prism terminate.F90)
The statistics will get printed for all processes in a file with the name given as argument of the
psmile timer init. Currently, x=1 and x=2 are used under CPP key PROFILE in the PSMILe to
measure the total time and the time used in prism enddef (see prism init.F90, prism enddef.F90
and prism terminate.F90). In the Driver/Transformer, x=1 is used under CPP key PROFILE to
measure the total time used by the Driver/Transformer (see prismdrv init appl.F90 and
prismdrv finalize.F90).

Bibliography

Balaji, V., 2001: Parallel Numerical Kernels for Climate Models. W. Zwieflhofer and N. Kreitz, eds.,
DEVELOPMENTS IN TERACOMPUTING: Proceedings of the Ninth ECMWF Workshop on the Use of
High Performance Computing in Meteorology, 277 – 295, European Centre for Medium-Range Weather
Forecasts, World Scientific Press, Reading, Reading, UK.

Eaton, B., J. Gregory, B. Drach, K. Taylor, and S. Hankin, 2003: NetCDF Climate and Forecast (CF)
Metadata Conventions.

Gropp, W., S. Huss-Lederman, A. Lumsdain, E. Lusk, B. Nitzberg, W. Saphir, and M. Snir, 1998: MPI:
The Complete Reference. Vol 2: The MPI-2 extensions.. MIT Press.

Jones, P., 1999: First- and Second-order Conservative Remapping Schemes for Grids in Spherical Coor-
dinates. Mon. Weath. Rev., 127, 2204 – 2210.

Li, J., W. Liao, A. Choudhary, R. Ross, R. Thakur, R. Latham, A. Siegel, B. Gallagher, and M. Zingale,
2003: Parallel NetCDF: A High-performance Scientific IO Interface. Proceedings of the SC’03, Nov
15-21, Phoenix, Arizona, USA.

Redler, R., S. Valcke, and H. Ritzdorf, 2010: OASIS4 - A Coupling Software for Next Generation Earth
System Modelling. Geoscience Model Development, 3, 87–104.

Snir, M., S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra, 1998: MPI: The Complete Reference.
Vol 1: The MPI Core. MIT Press.

57

Index

32 Bit architectures, 53
64 Bit architectures, 53

AD, 38, 39
argument, 39
coupling mode, 39
local name, 39
long name, 39
nbr procs, 39
start mode, 39

Averaging, 12

Calendar, 35
Collective calls, 13, 27, 34
Compiling, 51

Driver, 13, 14
DTD, 38

EPIO, 27
EPIOS, 27
EPIOT, 27

Gathering, 12
Gauss reduced grid, 21
Gauss reduced grids, 18
Global index space, 20
Grid types, 17, 19

ID, 12
Identificators, 12
Initialisation, 13
Internal communication, 14
IO, distributed, 28
IO, parallel, 28
IO, pseudo parallel, 28

Lag, 28, 31, 32, 45
LAM-MPI, 53
Local index space, 20

MPI, 12–14, 34, 35
MPI Comm Spawn, 53
MPI Comm Spawn Multiple, 53
MPI Finalize, 13, 34
MPI Init, 13, 34
LAM-MPI, 53
MPICH, 53

MPI communicator, 14
MPI-IO, 28

MPICH, 53
mpp io, 28

Neighbourhood search, 27

Partition, 20
PMIOD, 38
PRISM API, 12
PRISM API

prism abort, 35
prism calc newdate, 36
prism def grid, 16
prism def partition, 20
prism def var, 26
prism enddef, 27
prism error, 36
prism get, 30
prism get calendartype, 35
prism get local comm, 14
prism get nb ranklists, 15
prism get ranklists, 15, 15
prism get real kind type, 36
prism init, 13
prism init comp, 13, 15
prism initialized, 14
prism put, 29
prism put inquire, 31
prism put restart, 31
prism reducedgrid map, 23
prism remove mask, 37
prism set corners, 18
prism set mask, 20
prism set points, 24
prism set points gridless, 25
prism terminate, 34
prism terminate, 13
prism terminated, 35
prism version, 36
prism init, 14

PRISM derived data type
PRISM Time Struct, 36

PRISM derived data types, 13
PRISM Parameter

PRISM gaussreduced regvrt, 17, 19
PRISM gridless, 17, 19
PRISM irrlonlat sigmavrt, 17
PRISM irrlonlatvrt, 17, 19
PRISM reglonlat sigmavrt, 17
PRISM reglonlatvrt, 17, 19

58

INDEX 59

PRISM Time Structure, 36
Proleptic Gregorian Calendar, 35

Restart, 31
Running, 51

Scattering, 12
SCC, 38

application, 42
component, 43
coupling mode, 42
driver, 42
end date, 42
executable name, 42
host, 43
local name, 42
long name, 42
nbr procs, 42, 43
ranks, 43
redirect, 42
run, 42
start date, 42
start mode, 42

SCC XML, 13
SMIOC, 38

code, 40, 44
contact, 40, 44
documentation, 40, 44
file, 49
file adding, 50
file fill value, 49
file format, 50
file io mode, 50
file name, 49
file packing, 50
file scaling, 50
file suffix, 49
grid, 40
grid local name, 40, 44
indexing dimension, 40, 44
input, 46
intent, 41, 44
interpolation, 46, 47
laboratory, 40, 44
lag, 45
local name, 40, 43
long name, 40, 43
output, 44
transient, 41, 44

SMIOC XML, 14

Time lag, 28

XML, 38
Attribute, 39
Element, 39
Tag, 39

60 INDEX

	Acknowledgments
	Introduction
	OASIS4 sources
	Warning and Copyright Notice
	Reference
	How to obtain OASIS4 sources
	OASIS4 directory structure
	OASIS4 sources
	Other OASIS4 directories

	OASIS4 Driver/Transformer
	The Driver part
	The Transformer part
	Interpolations and regriddings
	2D interpolations and regriddings
	3D interpolations and remappings
	User-defined remapping

	OASIS4 Model Interface library, PSMILe
	Initialisation phase
	prism_init
	prism_init_comp
	prism_get_localcomn
	prism_initialized

	Retrieval of SCC XML information
	prism_get_nb_ranklists
	prism_get_ranklists

	Grids and related quantities definition
	prism_def_grid
	prism_set_corners
	prism_set_mask
	prism_def_partition
	prism_reducedgrid_map
	prism_set_points
	prism_set_points_gridless

	Declaration of Coupling/IO fields
	prism_def_var

	Neighbourhood search and determination of communication patterns
	prism_enddef

	Exchange of coupling and I/O fields
	prism_put
	prism_get
	prism_put_inquire
	prism_put_restart

	The Restart Mechanism
	An example of a restart generation

	Termination Phase
	prism_terminate
	prism_terminated
	prism_abort

	Query and Info Routines
	prism_get_calendar_type
	prism_calc_newdate
	prism_error
	prism_version
	prism_get_real_kind_type
	prism_remove_mask

	OASIS4 description and configuration XML files
	Introduction to XML concepts
	The Application Description (AD)
	The Potential Model Input and Output Description (PMIOD)
	Component model general characteristics
	Grids
	Coupling/IO fields (transient variables)

	The Specific Coupling Configuration (SCC)
	The Specific Model Input and Output Configuration (SMIOC)
	Component model general characteristics
	Grids
	Coupling/IO fields (transient variables)
	The `output' element
	The `input' element
	 The element `interpolation'
	The `file' element

	Compiling and running OASIS4 and TOYOA4
	Introduction
	Compiling OASIS4 and its associated PSMIle library
	Compilation with TopMakefileOasis4
	Some details on the compilation
	Remarks and known problems

	Compiling and running TOYOA4
	Getting some internal CPU and elapse time statistics

	Index

