
1

Workshop Proceedings

Coupling Technologies for Earth System Modelling:
Today and Tomorrow

December 15-17, 2010
Toulouse, France

Sophie Valcke/CERFACS, Rocky Dunlap/Georgia Tech

CERFACS Technical Report TR-CMGC-11-39 (May 2011)

On December 15th-17th 2010, CERFACS and the Georgia Institute of Technology organized a
workshop on the theme of “Coupling Technologies for Earth System Modelling: Today and
Tomorrow” at CERFACS in Toulouse, France. The first thrust of the workshop was to assess the state
of the art in Earth System Modelling (ESM) coupling frameworks, including current assumptions
about coupled geophysical models, the nature of the capabilities provided, and the range of software
architectures currently employed. A primary objective was to explore and more deeply understand the
trade-offs involved in the range of approaches to coupling in use throughout the community. The
second thrust was to discuss a vision for coupling in the year 2020. This involved positing what new
requirements will arise in the next ten years and how existing coupling frameworks must evolve to
meet those needs.

45 people from different countries attended the workshop: 20 from France, 12 from other EU
countries, 11 from the US, and 2 from China. The workshop programme was established by a
Programme Committee composed of V. Balaji (Princeton University), Cecelia DeLuca (NOAA),
Rocky Dunlap (Georgia Tech), Rupert Ford (University of Manchester), Sophie Valcke (CERFACS)
and Mariana Vertenstein (NCAR). The first day and a half of the workshop was devoted to detailed
presentations of current coupling technologies from developers of ESMF, CESM, MCT, PALM,
OASIS, FMS, BFG, OpenMI and OOPS. The rest of the workshop included presentations on coupled
modelling perspectives at different centres, coupling related issues (e.g., data assimilation, metadata,
and education), software and hardware challenges for coupling technologies, and two round tables to
allow in-depth, interactive discussions.

The present proceedings include:

• the detailed workshop programme (p.2),

• a summary of the round table discussions that took place both during the workshop and in the
following weeks via interactive wiki pages (pp.3-6),

• a set of workshop conclusions (p.7),

• an extended abstract for each of the presentations (pp.8-66),

• the list of participants (p.67).

All details about the workshop including presentation slides and interactive wiki pages are available
on the workshop web site at the following web address:

https://verc.enes.org/models/software-tools/oasis/general-information/events

2

Workshop programme

December 15th:
Introduction and welcome, by Bijan Mohammadi (CERFACS director)
Current coupling technologies and developments I; chair: Sophie Valcke (CERFACS)
• 09h15 – 10h00: The Earth System Modeling framework ESMF, by Ryan O'Kuinghttons (NOAA/CIRES)
• 10h00 – 10h45: The Community Earth System Model CESM1, by Tony Craig (NCAR))
• 11h15 – 12h00: The Model Coupling Toolkit by Robert Jacob (Argonne National Laboratory)
• 12h00 – 12h45: The dynamic parallel PALM coupler by Andrea Piacentini (CERFACS)

Current coupling technologies and developments II; chair: Bob Oehmke (NOAA)
• 14h00 – 14h45: OASIS, a coupler for climate modelling, by Sophie Valcke (CERFACS)
• 14h45 – 15h30: The GFDL Flexible Modeling System FMS, by Balaji (Princeton University)
• 16h00 – 16h45 : The Bespoke Framework Generator BFG, by Rupert Ford (U. Manchester)
• 16h45 – 17h30 : The OpenMI interface for flexible, dynamic coupling, by Stef Hummel (Deltares)
• 17h30 – 18h15 : OOPS - An Object Oriented Framework for Coupling Data Assimilation Algorithms to

Models, by Mike Fisher (ECMWF)

December 16th:
Current coupling technologies and developments III; chair: Mariana Vertenstein (NCAR)
• 09h00 – 09h45 : C-Coupler: A coupler for Earth System Modeling, by Xiaoge Wang (Tsinghua University,

Beijing, China)
• 09h45 – 10h30 : The Model for Prediction Across Scales (MPAS),, by Michael Duda (NCAR/MMM)
• 11h00 – 11h30 : Feature modeling of coupling technologies, by Rocky Dunlap, Spencer Rugaber, and Leo

Mark (Georgia Tech)

11h30 – 12h30: Round table 1 : How do the different coupling technologies fit the different
application needs and constraints; chair: Mariana Vertenstein and Sophie ValckeCoupling at the
boundaries ; chair: Rocky Dunlap (Georgia Tech)
• 15h00 – 15h30 : Data assimilation and coupling, by Andrea Piacentini (CERFACS)
• 16h00 – 16h30 : Web based experiments with Earth system models of different complexity used for

education at Freie University Ingo Kirchner (FU Berlin)
• 16h30 – 17h00 : Metadata and coupling, by Rupert Ford (Manchester University)

December 17th:

Coupled modeling perspectives at different centers ; chair: Rupert Ford (Manchester University)
• 09h00 – 09h30 : Leveraging the New CESM1 CPL7 Architecture - Current and Future Challenges, by

Mariana Vertenstein (NCAR)
• 09h30 – 10h00 : Coupled models at the Max-Planck-Institute for Meteorology, by René Redler (MPI

Meteorology)
• 10h00 – 10h30 : Infrastructure requirements in support of Met Office models, by Steve Mullerworth

(MetOffice)

Software and hardware challenges for coupling technologies; chair: Mick Carter (Met Office)
• 11h00- 11h30: Addressing the Challenge of Exaflopic Computation, by Jean-Yves Berthou (EDF R&D)
• 11h30 – 12h00: Designing HPC Software for an Uncertain World of Hardware, by Wael Elwasif and David

Bernholdt (Oak Ridge National Laboratory)
• 13h30 – 14h00: Future directions for coupling technology in Earth system modeling, by Balaji (GFDL)

14h00 – 15h15: Round table 2: software and hardware challenges for coupling technologies; chair:
Rob Jacob

Conclusions and recommendations

3

Summary of the round table discussions

What follows is a summary of the round table discussions that took place during the workshop and in
the following weeks via interactive wiki pages.

The theme of the first round table was a comparative analysis of current ESM coupling technologies
including a discussion of how the technologies address different application needs and constraints. The
following questions were proposed for the first round table:
• Is interoperability an unreachable dream? Should we even aim for it?
• What should be the role of the coupling software layer (exchange of data,

interpolation/transformation of data, weights-and-address calculation, process management, code
generation, load balancing, etc.)?

• How far/deep should we (try to) go in standardizing the coupling infrastructure (technical interface
compatibility, superstructure/framework layer, scientific interface, etc.)?

The theme of the second round table was software and hardware challenges for coupling technologies.
The questions proposed for the discussion were:
• How can more levels of parallelism be exposed in coupling operations?
• How can we increase concurrency in the coupled system?
• What is the impact of smaller memory per node on the coupling-related functions?
• If exascale needs new languages and rewrite of component models, what will be the impact on

coupling?

Workshop discussions typically proceeded in an organic manner, sometimes jumping from one topic
to the next and then back again. To improve coherence, instead of recreating the original flow of
discussion we have organized the workshop content into several high-level topics: the definition of
coupling, the scope of couplers, the current approaches to coupling, interoperability, and future
coupler developments. In the concluding section, we summarize the major takeaways of the workshop
and offer some recommendations.

The Definition of Coupling
For some workshop participants, "coupling" refers to the process of making two originally
independent components interact through a separate architectural layer (as opposed to native
subroutine calls) and necessarily involves data copy or transfer (and possibly other transformations
such as rearrangement and/or regridding). Under this definition of coupling, the modularity of the
original components is preserved, but the use of a separate architectural layer implies a potential loss
of performance. Other workshop participants adhered to a more general definition of coupling: the
action of making two originally independently modelled processes interact, regardless of the
implementation used to realize this interaction (e.g., via data copy/transfer or via shared memory
accesses or adding a process as a subroutine).

The Scope of Couplers
Since workshop participants represented a wide range of scientific and technical backgrounds, an
important question centred on the scope of couplers. Which functions should couplers provide and
which functions should be left to other software components in the system?

There was widespread agreement on certain basic functions, such as data transfer and
interpolation/regridding, although not all software packages represented provided these functions and
many rely on external packages for calculating interpolation weights. 2D linear, higher order,
conservative and user-defined regridding functions were widely accepted as essential, and 3D
volumetric regridding was also indentified as important for some applications. The type of grids
supported should include all logically-rectangular grids (latitude-longitude, stretched, rotated, etc.) but
also unstructured grids such as Gaussian reduced and icosahedral grids which are becoming more
popular in the climate modelling community. Coupling of components with adaptive grids is foreseen

4

in the near/mid- term. In this case, the coupler should then be able to recalculate the regridding
neighbours and weights during the run and efficiently manage the impact on the communication.

There are other capabilities currently supported by a subset of the coupling technologies. Some
couplers allow external process control of the components being coupled (e.g., time stepping), where
others just ensure transformation and exchange of coupling data without affecting the execution of the
component models per se. It is also interesting to note that in some cases the coupling layer can
manage ensemble runs of the coupled model. This allows one ensemble of runs to be considered as
one application with an added level of parallelism (the number of runs). Discussions did not lead to a
firm conclusion on whether or not the coupling layer should also manage the dynamic (re-)load
balancing of the coupled model components.

Current Approaches to Coupling
The coupling technologies presented during the workshop can roughly be split into two main
categories. With the "multiple executable" approach (e.g., OASIS, O-PALM), the original components
are run as separate concurrent executables, and their main characteristics, such as memory
management or internal parallelisation, remain practically untouched with respect to their standalone
mode. The exchange of coupling data is performed through in-place "put" and "get" instructions which
are configured externally for a particular run (e.g., the source and the target, the coupling frequency).
In this case, the components expose only a data interface to the coupler and it is the user’s
responsibility to ensure that the component models coherently define some global parameters such as
the total run duration, the calendar, etc. The main advantage of this approach is that it requires
minimal intrusion into or restructuring of existing legacy codes. The drawback is that it is less flexible
and potentially less efficient because it constrains the way components can be mapped to the
computing hardware. Therefore this approach can lead to a waste of resources if the components are
"naturally sequential" (i.e., if one component necessarily waits for an input while the other is doing
some calculation and vice-versa) and if they are run on separate sets of processors. Furthermore, in a
multiple executable system, it is not possible to pass coupling data by reference, which would
generally be faster.

In the "integrated" mono-executable approach (e.g. CESM1, ESMF, FMS) each model source code is
decomposed into init, run, and finalize units with argument lists that match the interface standard
expected by the coupling layer. The coupling data are made available as input and/or output at each
calling interface. Conforming to component interfaces is typically achieved by creating wrappers that
are distinct from user code. The internals of user code, including data structures and parallelisation, are
not affected by the wrappers. This approach is more flexible and in some cases more efficient as the
component models can be executed concurrently, sequentially, or in some hybrid mode and coupling
exchanges can be optimized as shared memory accesses. Components can be nested within other
components allowing many possible configurations of couplers and components. However, this
approach requires that components expose both data and control interfaces. A driver or parent
component controls the couplers and components, and it also enforces a consistent subset of global
parameters (such as run duration) across component models. If components do not already have clear
initialize, run, and finalize units, significant restructuring may be required. The places where data
transfers can happen is restricted, and this may affect the control flow and require scientific
reformulation.

Research in Generative Programming (such as BFG2) proposes ways in which the “multiple-
executable” and “integrated” approaches can be combined.

Interoperability and componentization
Interoperability was an important theme throughout the workshop and was the particular point of focus
during the first round table discussion. Participants recognized the advantages of interoperability in the
context of Earth System Modelling, especially the ability to reuse code in new contexts and facilitate
coupling of external components into existing models.

5

Most participants agreed that working toward some level of interoperability is a worthwhile goal.
However, this did not imply that full-fledged “plug-and-play” compatibility is a viable goal. Plug-
and-play compatibility implies that component models use not only the same technical coupling
interface (how to exchange data), but also must agree on a standard scientific coupling interface (what
data to exchange). The European PRISM project made an attempt to agree on such two-level standard
but this proved unsuccessful. In fact, even if the technical coupling interface can in principle be
standardized (all groups can agree to use the same coupling software), defining standard scientific
coupling interfaces turned out to put burdensome constraints on the science itself. Therefore, PRISM
did not put further effort into the standardization of the scientific interfaces, as keeping diversity in the
science (by minimizing scientific constraints) was considered more important. Furthermore, in many
cases scientists do not want to change different components frequently as climate applications are
sensitive complex systems that need to be tuned and evaluated in detail for each particular
configuration.

All agree that componentization1 makes sense at some level of coupling. Componentization means
wrapping a particular scientific model with a clear set of functions and well-defined interfaces to
provide a convenient method for coupling and use. Componentization facilitates program
understanding and promotes interoperability; in fact, the difficult step in coupling is usually
identifying and harmonizing coupling fields across components, not adapting model codes to the same
technical interface (i.e., the same coupling layer). Componentization also provides a logical
organization of the source code and helps prevent evolution toward a monolithic code. However, at
some point, componentization may incur a penalty of performance, or reduce the code readability.

Further coupler developments in the short, mid and long term
Existing couplers have been developed by different groups with different goals, priorities and
constraints in mind. In the short and mid term, this is likely to continue. Therefore, it will be
important to continue to develop, in parallel, a reduced number of coupling technologies, each having
a significant amount of resources (~5 FTEs at minimum), and each targeting a different coupling
approach. Of course, sharing some building blocks (e.g., the conservative remapping algorithm)
among these technologies should be encouraged. The coupler development teams should include
computing scientists interacting frequently with climate modelling scientists.

In all cases, an effort should be made to identify, share, and promote best practices in coupling, such
as the calculation of fluxes at the resolution of the “exchange grid” (see FMS presentation) or
adaptation of the surface tiles in the atmosphere model to fit the ocean model coastline.

In the longer term, the coupling technologies will have to adapt to future computer architectures.
While the individual arithmetic processors are probably going to remain at ~1 GHz (109), there will
most likely be a massive increase in the number of cores, with increased heterogeneity (e.g., a mix
between CPUs and GPUs) and modest increases in available memory per core and inter-node
communication throughput. One way to reach the exascale (O(1018) FLOPS) expected before the end
of the decade is to expose new levels of parallelism. The following proposal was presented, assuming
that processors remain at O(109) clock speed:

• Increase the resolution. This will allow a higher level of parallelism within individual
model components, which we expect to execute on O(105) processors. But the throughput
of the model is expected to continue to decrease with increasing resolution.

• Increase the number of concurrent components. O(10) concurrent components should be
run in one coupled application; concurrent coupling using a forward-only timestep (i.e.,
X(t+1) = X(t) +f[Y(t)]) could be applied to sub-components (e.g., physics time

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
1	 Componentization in geoscience modeling community is akin to software modularization. ESM components

should not be confused with the notion of components as defined by the Component-based Software
Engineering community.	

6

dependencies in the atmosphere) in addition to the ocean and atmosphere components for
which it is traditionally used.

• Increase the number of members in ensemble simulations. One ensemble simulation with
O(100) members should be considered as one climate application with the different
members adding one level of parallelism.

• Increase the concurrency in the workflow. Additional parallelism of O(10) should be
reached at the level of the different workflow tasks (pre-processing, execution, post-
processing, analysis).

Parallelization along the time dimension and run of multi-model ensembles were also mentioned as
other ways to increase the parallelism.

Many aspects of running with increased concurrency of components were discussed. With more
concurrent components, load balancing will become even more difficult but this might not be as great
a concern as the cost of the CPU cycle will most probably no longer be the limiting factor. Memory
movement (e.g. coupling data transfer) will likely become more expensive and so it may be necessary
for models to stop decomposing their domains independently (letting the coupler sort it out) and
instead co-locate points from the same region on the same node as much as possible. Participants
proposed several other ways to reduce the coupling-related communication costs. Overlay of
calculation and communication (e.g., a communication is started, some computation is executed at the
same time, and then the communication is checked for completion) and redundant calculations (i.e.,
defining very wide halos and doing the calculation for the same grid points by multiples processes) are
options that should be explored. Of course, we can always hope for faster hardware networks and
improved communication implementations using MPI or possible alternatives.

Regarding future platforms, the multiple executable coupling approach may still be the choice of a part
of the community. Therefore, it is important to ensure that future operating systems support the
MPMD mode.

Finally, the impact of new languages (beyond F90 and MPI) is hard to evaluate. Some current
programming models (e.g., CUDA for GPUs) are not amenable to a driver-kernel programming
model. In all cases, the community will have to get organized to ensure that the new languages and
technologies are adopted at the same pace by the developers of the different components. If the new
programming languages and paradigms force the community to rewrite model code, this should be
seen as an opportunity to consider the adoption of community-wide technical standards that would
facilitate the coupling or even to unify coupling approaches and share developmental costs.

7

Conclusions and recommendations

• The advantages of interoperability and componentization in the context of Earth System
Modelling are recognized. However, plug-and-play compatibility should not be an objective
per se, as it requires a standardization of the scientific coupling interfaces among the
components (i.e., what field data to exchange). Furthermore, swapping model components
quickly and frequently is not of primary importance in the climate modelling community as
climate models are complex systems that require detailed tuning and validation for each
combination of components.

• Current coupling technologies can roughly be split into two main categories. The “multiple
executable” approach is somewhat less flexible and can be less efficient in some cases but is
straightforward to implement requiring minimal modification to individual models. The
“integrated” mono-executable approach, which requires the original codes to be split into init,
run and finalize units and some standardization of the resulting component interfaces, limits
the places in code where data exchanges can happen. Although this can simplify program
flow, it can also affect time sequencing and require scientific reformulation. However,
because components can be run sequentially or concurrently, there are additional opportunities
for performance optimization

• For maximum coupling flexibility and efficiency, all climate component models should be re-
factored into init, run and finalize units. Where the norm is a multiple executable approach,
such as the European climate modelling community, it may be difficult to achieve the
agreement on component interfaces required for integrated coupling. To satisfy all cases, an
“ideal” coupling technology should therefore offer both approaches in order allow an easy
assembling of legacy code but also provide more efficient and flexible coupling when
interface agreements can be reached. Current research in Generative Programming explores
approaches that may enable such an “ideal” coupling technology to be built.

• Existing coupling technologies have been developed with different priorities and constraints.
In the short term, it is recommended to keep the parallel development of a reduced number of
coupling technologies, each one with a significant amount of resources (~5 FTEs at a
minimum). The coupler development teams should include computing scientists interacting
closely with climate modelling scientists.

• In all cases, the different coupler developers should interact more closely and share more
infrastructure building blocks (e.g. remapping/regridding algorithms, decomposition
descriptions, metadata utilities, parallel I/O libraries, performance timers, etc.). Best practices
in coupling should also be discussed, identified, and promoted.

• On the longer term, increased parallelism is seen as essential to exploit the exaflop platforms
expected before the end of the decade. It will then be crucial to limit the load of the associated
data communication by carefully distributing the coupled components over available
processes or by finding ways to diminish its impact (overlay of communication and
calculation, redundant calculations, etc.).

• If model rewrites are required in new programming languages in the years to come, we should
take advantage of that opportunity to better agree on coding and coupling standards that will
better facilitate the coupling of Earth System components between different groups. As future
hardware will probably require significant changes in coding approaches,
leveraging/combining our resources as much as possible to address the new hardware
challenges should be seriously considered.

• The challenge of leveraging the exascale for climate modelling should be addressed with
significant manpower and funds so to ensure that climate science remains a major driver for
high performance exascale computing.

8

9

Extended abstracts

The Earth System Modeling framework ESMF

by Ryan O'Kuinghttons (NOAA/CIRES)

General Overview
The Earth System Modeling Framework (http://www.earthsystemmodeling.org) is open
source software for building modeling components, and coupling them together to form
weather prediction, climate, coastal, and other applications. ESMF was motivated by the
desire to exchange modeling components amongst centers and to reduce costs and effort by
sharing codes.

The ESMF package is comprised of a superstructure of coupling tools and component
wrappers with standard interfaces, and an infrastructure of utilities for common functions,
including calendar management, message logging, grid transformations, and data
communications. The project is distinguished by its strong emphasis on community
governance and distributed development, and by a diverse customer base that includes
modeling groups from universities, major U.S. research centers, the National Weather
Service, the Department of Defense, and NASA. The ESMF development team is centered at
the NOAA Earth System Research Laboratory and the Cooperative Institute for Research in
Environmental Science at the University of Colorado.

Rationale and History

The ESMF collaboration had its roots in the Common Modeling Infrastructure Working
Group (CMIWG), an unfunded, grass-roots effort to explore ways of enhancing collaborative
Earth system model development. The CMIWG attracted broad participation from U.S.
weather and climate modeling groups at research and operational centers. In a series of
meetings held from 1998 to 2000, CMIWG members established general requirements and a
preliminary design for a common software framework.

In September 2000, a critical mass of CMIWG participants developed a coordinated response
to a NASA solicitation that called for the creation of an “Earth System Modeling
Framework.” They received awards for linked proposals that covered development of the
framework and its incorporation into modeling and data assimilation applications. As the
ESMF project gained momentum, it replaced the CMIWG as the focal point for developing
community modeling infrastructure in the U.S. The second major development cycle for
ESMF saw the framework emerge as a multi-agency effort. Major new grants came from
NASA, the Department of Defense, NOAA, and the National Science Foundation, and many
smaller ESMF-based application adoption projects were funded in domains as diverse as
space weather and sediment transport. During this project phase, the central data structures in
ESMF were completely rewritten to improve flexibility and extensibility.
In 2008, ESMF was chosen as the technical basis for the National Unified Operational
Prediction Capability (NUOPC), a consortium of U.S. operational weather and climate centers
that aims to deliver an ESMF-based, managed, multi-model ensemble. The emergence of this
large-scale national project marks the beginning of the framework’s third phase.

Component Architecture

ESMF is based on principles of component-based software engineering. The components
within an ESMF software application usually represent large-scale physical domains such as
the atmosphere, ocean, cryosphere, or land surface. Some models also represent specific

10

processes (e.g. ocean biogeochemistry, the impact of solar radiation on the atmosphere) as
components. In ESMF, components can create and drive other components so that an ocean
biogeochemistry component can be part of a larger ocean component.

ESMF offers two kinds of components: a Gridded Component (GridComp), which is
associated with a physical domain, and a Coupler Component (CplComp), for transforming
and transferring data between GridComps. ESMF components exchange information with
other components only through State objects. A State contains data types representing fields,
arrays, or other States. Each Gridded Component is associated with an import State,
containing the data required for it to run, and an export State, containing the data it produces.

In order to adopt ESMF, modelers must decide how to organize their code as a set of
GridComps and CplComps, then split these components into standard ESMF methods
(initialize, run, and finalize, each of which may have multiple phases). The next step is to
wrap native model data structures with ESMF data structures. This can be done either in index
space, using a very general ESMF Array class, or in physical space, in which case model grids
must be expressed using the ESMF Grid class. If Grids are used, ESMF can generate the
interpolation weights needed for remapping between components.
ESMF enables components to run sequentially, concurrently, or in a mixed mode.
Applications usually run with all components linked into a single executable program, but
there is also support for running separate components as multiple executables. ESMF is
written mainly in C++, and has Fortran and C interface bindings.

Coupling and Other Capabilities

Grid remapping is a central function of ESMF, and the framework supports a wide variety of
grids and remapping options. Generation of interpolation weights and their application is fully
parallel. ESMF supports first order conservative, bilinear, and a higher-order finite element-
based patch recovery method for remapping. Logically rectangular and unstructured grids are
both supported, in 2D and 3D. There is a range of options with respect to masking, handling
poles, and behavior of unmapped points. The remapping system is flexible and modular, in
that the calculation of interpolation weights can be performed either during a model run or
offline, and the subsequent application of weights can be made as a separate call.

The ESMF team is actively developing extensive metadata handling capabilities. This effort
was motivated by the growing need to carefully document the provenance of the data
produced by climate and other simulations, and by the desire to automate aspects of coupling
to enhance cross-institutional interoperability. ESMF has a class that represents metadata as
name-value pairs within either prefabricated or custom “Attribute packages.” Methods of this
class can be used to aggregate, store and output metadata. Metadata schemata follow
community conventions such as the Climate and Forecast (CF) conventions, ISO standards,
and the METAFOR Common Information Model (CIM).

Overview of Results
Since its inception in 2002, the ESMF effort has steadily grown, attracting new users, new
offshoots, and new sponsors. Its success can be measured by the increasingly robust and fully-
featured software that it has delivered, by the growing pool of ESMF components and
applications in the community, and by the emergence of new partnerships facilitated by this
shared infrastructure.
Timing results for a variety of codes show that the overhead of using ESMF components is
typically negligible (< 3% of runtime), and that key operations have good scaling to tens of

11

thousands of processors. Grid remapping and parallel communications are highly scalable and
extensible to many new grid types. The framework is very robust and is exhaustively tested
nightly on 24+ platforms with a suite of over 4000 tests (covering remapping accuracy, API
correctness, use test cases, etc). ESMF customers are now finding that they are increasingly
able to achieve results using the framework that they cannot through other means.

There are currently more than 70 ESMF components and applications in the community. The
largest ESMF systems are the GEOS-5 model at NASA Goddard Space Flight Center, which
is structured as a deeply nested component hierarchy; the whole Earth system developed by
the Battlespace Environments Institute, which combines coastal, watershed, ocean,
atmosphere, and space weather components into multiple models; and the new numerical
weather prediction system at the National Centers for Environmental Prediction, which will
be a key part of a next-generation operational multi-model ensemble. These activities have
been deeply integrative, bringing to bear the resources of multiple organizations on problems
too large for any one of them to address alone.

Future Plans

In the future, ESMF will continue to improve and extend its functionality, improve training
materials, and expand and support its customer base. The project is also evolving to address
new concerns. ESMF initially focused on coupling components intended to run on the same
computer, with performance as the foremost concern. In response to changing science
requirements and technical trends, future plans focus on leveraging the interface and metadata
standardization implicit in ESMF adoption in order to enable ESMF components to operate in
more heterogeneous environments. One aspect of this is linking ESMF components to web-
based coupling technologies. Another is introducing ESMF components and models into
science gateways that catalog and integrate diverse, distributed resources.
The integration of modeling with data services is a key part of this vision. The Curator
project, initiated in 2005 with NSF funding and continued under NASA and NOAA, pairs
ESMF leads with collaborators from the NOAA Geophysical Fluid Dynamics Laboratory, the
Earth System Grid (ESG) data distribution portal project, the Georgia Institute of Technology,
and the E.U. METAFOR project. The Curator group is creating a user interface for ESG
based on the METAFOR Common Information Model. This will provide access to much
more structured, searchable information about the models used to generate climate datasets
than has ever been available before. The portal will be used to support the fifth Coupled
Model Intercomparison Project, part of the next Intergovernmental Panel on Climate Change
assessment.

12

A New Flexible Coupler Designed for Earth System Modeling for CCSM4/CESM1
by Anthony Craig (NCAR2 Earth System Laboratory)

The Community Climate System Model (CCSM) development is based at the National Center
for Atmospheric Research (NCAR) in Boulder, Colorado, USA. CCSM is a state-of-the-art
global climate model consisting of four fundamental physical components: an atmosphere
model, an ocean model, a land surface model, and a sea ice model. In addition, a coupler (or
driver) is used to exchange boundary data between the components and to coordinate the time
evolution of the physical models. CCSM is used to understand the Earth's global climate
system, to predict the effects of climate change, and to understand past climates. It is
developed as a high performance computing application but is used on a wide variety of
platforms. Various fully prognostic (active) data (where coupling fields are derived from
input files), dead (for testing), and stub models are available for use in the system. The
Community Earth System Model (CESM) is an extension of CCSM that includes an
additional land-ice component, a higher altitude atmosphere model option, land and ocean
biogeochemistry capabilities, and an atmospheric chemistry model. For the purposes of this
discussion, CCSM4 and CESM1 are the same model and the name “CCSM” or “CCSM4”
will be used to describe capabilities in both models.

In general, couplers carry out critical but limited functions within coupled systems. These
functions normally include the support of data communication between components, the
sequencing and integration control of the system as a whole, and the execution of coupling
methods such as mapping (interpolation), merging of fields, and diagnostics. Sequencing and
integration control are associated with the time evolution of the system and deal with issues
such as the temporal sequencing of components and the coupling frequencies and lags
between components. Separately, there are several basic characteristics of coupled systems
that have implications on the system design. The first characteristic is whether the system is a
based on a single or multiple executable design. The second is how components can be laid
out on processors; whether sequential, concurrent, or mixed. The third characteristic is
whether data is communicated between components directly or through a central “hub”. And
finally, the fourth important characteristic is whether the system is coupled via a top-level
driver or through coupling calls from inside components directly. The coupler functions and
design characteristics play an integral role in determining the climate model system
implementation.
There is a long history of building coupled climate models at NCAR. CCM development
started in the 1980s and was one of the first coupled climate models. It consisted of
prognostic atmosphere and land models coupled to simpler prescribed ocean and ice models.
The model was fully sequential, all components ran on the same grid, there was no memory
parallelism, and surface models were called from the atmosphere component directly. In this
model, the atmosphere component acted as the top-level driver and communication was
through interface calls without any need for interpolation. In the mid-1990s, NCAR started to
develop more sophisticated coupled climate models with fully prognostic components in ways
that required distinct coupling software. Initially, there were two parallel efforts. PCM was a
single executable, memory parallel implementation where the atmosphere/land, ocean, and
sea ice were all on distinct grids but running on the same processors. The initial target
platforms for PCM were CM5, T3D, T3E, and SGI Origin. Coupling was carried out with a

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
2	 NCAR is sponsored by the National Science Foundation	

13

distinct driver, components placed coupling data in a coupler common block, and coupler
functionality such as mapping was carried out as part of the top-level driver implementation.
The other mid-1990s NCAR coupled climate model was CSM1. CSM1 was a multiple
executable, shared memory parallel implementation with distinct grids for the
atmosphere/land and ocean/ice. In CSM1, all components ran on distinct hardware processors
and there was a separate hub coupler that mediated communication, mapped fields, and
implicitly handled time integration. Coupling in CSM1 was done via calls directly in
components. The initial target platforms for this implementation were Cray vector platforms
such as the YMP and C90 as well as SGI Origin systems. In around 2000, an effort was made
to merge the best features of PCM and CSM1 into a single model called CCSM2. The
CCSM2 coupling architecture largely followed CSM1 with a multiple executable, concurrent
design using a separate hub coupler. But the CCSM2 components were now partly based on
the work of PCM with respect to memory parallel capabilities, although the coupler in
CCSM2 was still a single processor application. CCSM2 targeted general distributed shared
memory systems. The coupler became a fully memory parallel component with the release of
CCSM3 in 2004.
With the CCSM4 release in 2010, a completely new approach was taken to coupling climate
models. CCSM4 is a single executable implementation that contains a top-level driver,
components are coupled via standard init/run/finalize interfaces, and individual components in
CCSM4 can be laid out on processors in relatively arbitrary ways such that components can
be run on identical or independent hardware processors. The top-level driver that runs on all
processors controls the processor layout and time sequencing of the components. A separate
coupler component that can run on a subset of all the processors still exists in the system to
map, merge, and carry out other coupler functions. Components in CCSM4 are parallelized
with MPI and OpenMP. The driver/coupler grids, component layout on processors,
decompositions, and configuration options are set at run-time based on Fortran namelist
inputs and communication with components at initialization. The CCSM4 driver/coupler uses
Model Coupling Toolkit (MCT) datatypes and methods extensively, mapping weights are
generated offline, and a new parallel IO (PIO) library is being used to support improved I/O
performance particularly in the area of memory scaling.
There were several reasons for migrating to this new coupling approach in CCSM4. The new
implementation improves performance because of greater flexibility in laying out components
on hardware processors compared to the prior concurrent-only CCSM3 system. The new
processor layouts also allow models to be coupled more tightly when needed without worries
over concurrent performance. CCSM4 provides an ability to run on a single processor
without MPI sequentially but is more memory and performance scalable for runs at much
higher resolution. Finally, implementing CCSM4 using a top-level driver with
init/run/finalize interfaces allows compatibility with the Earth System Modeling Framework
(ESMF) superstructure.

As mentioned above, components can be laid out on processors in relatively arbitrary ways, at
least in a technical sense. In addition, model results are independent of the component layout
on hardware processors because the driver sets the temporal evolution of the system not the
processor layout. However, in the current implementation of the driver, components cannot
actually be run completely concurrently. For scientific reasons related to consistency of the
surface albedos and the atmospheric radiation calculation, the atmosphere model run method
is always called after both the sea ice and land models’ run method. This is the only
constraint on concurrency in the system at the present time. But as a result, the optimal
component processor layouts usually have the atmosphere model overlapping hardware
processors used by the sea ice and land models.

14

The scaling of the CCSM4 coupler has been evaluated using four basic coupler kernels. A
flux calculation, a merge operation on the ocean grid, a rearrange of ocean data between two
different decompositions, and a mapping of data between an atmosphere and ocean grid were
run at two different resolutions and on three hardware platforms from 1 to 10,000 processors.
Time in seconds for each test case was collected. The timers were aggregated over the full
20-day dead model test, and barriers were used to eliminate the impact of load imbalance
outside the kernel.

The scaling of the flux kernel, which is trivially parallel (there is no communication) and very
FLOP intensive, is excellent. Linear scaling is demonstrated across all processor counts,
resolutions, and machines. The merge kernel is also trivially parallel but is primarily a
memory intensive operation. In the merge, several fields are copied out of memory and
combined using a simple mult-add operation. Those merged fields are then copied back into
memory. The scaling of the merge operation is linear at lower processor counts but then
flattens out at higher processor counts as the number of gridcells per processor decreases
below a few hundred. It’s likely the scaling of the merge is influenced by cache line
efficiency in this regime.
The rearrange kernel is dominated by communication. In this kernel, fields are rearranged
between two different decompositions on a common set of processors. This is almost an all-
to-all communication operation. As expected, the scaling is sub-linear at lower processor
counts and then quickly flattens out. Scaling performance is highly dependent on the machine
and resolution in this case. The rearrange kernel speeds up on all machines out to 100 to 500
processors. At higher processor counts, the scaling is flat or worse. The mapping kernel
scaling is similar to the rearrange kernel. The mapping operation involves rearranging data
and applying mapping weights in a mult-add loop to derive fields on new grids. At lower
processor counts, the mult-add plays a relatively larger role in the total mapping cost. But at
higher processor counts, the scaling of the mapping is consistent with the scaling of the
rearrange where performance flattens out and depends heavily on resolution and hardware
architecture.
The improvements in the memory and performance scaling capability of CCSM4 compared to
CCSM3 are significant. Performance improvements in the coupler were needed to keep up
with improvements in the rest of the system and to achieve new science goals. The model is
now being run at global resolutions of around one tenth of a degree on tens of thousands of
processors with reasonable performance and scaling.

Continual improvement in climate model performance in the future may become more
difficult. Most of the gains in the last decade came from faster hardware on a per processor
basis and improvements in basic grid decompositions, memory parallelization strategies, and
communication algorithms. Unfortunately, future generation hardware is likely to consist of
orders of magnitude more processors that are slower, heterogeneous, and with less and slower
memory. If so, future hardware will require models to scale to even higher processor counts
just to maintain today’s model throughput at current resolutions. New component, physics,
gridcell, tracer, or time parallelism may need to be found in the system, and new
communication strategies such as one-sided or the overlapping of non-blocking
communication with computation may need to be implemented.

15

The Model Coupling Toolkit
by Robert Jacobs and Jay Larson (Argonne National Laboratory)

MCT was designed to be an application neutral approach to solving parallel coupling
problems in multiphysics applications. “Application neutral” means not only that MCT can be
used in other applications besides climate modeling but also MCT does not impose any
structure on the overall application. Choices such as timestepping, number of models or
number of fields and overall architecture can affect the possible science done and should be
left to the coupled application developer. The developer also should be able to choose a la
carte which pieces of the toolkit to use in the coupled application. Application neutrality and a
library approach were central to our design philosophy in creating the Model Coupling
Toolkit (MCT). The application-neutral elements of coupling include data description,
efficient movement of that data in parallel and support for parallel data transformation and
interpolation.

MCT does not prescribe how communication and process management is done within the
model. Instead, MCT provides a datatype to describe the assembled coupled system to MCT.
MCT assumes MPI-based parallelism, but includes a small MPI-replacement library that
allows MCT to be used in non-parallel applications. MCT’s main datatype is a field data
object supporting storage of arbitrary numbers of real- or integer-valued fields indexible using
string tokens. This holds all data to be transferred during coupling. Another important
datatype is a highly flexible domain decomposition descriptor that employs virtual
linearization to represent multidimensional index spaces. This datatype is used by MCT to
automatically derive communications schedules for parallel data transfer and redistribution.
Calls to simple send/receive pairs using the MCT data storage type and the derived
communication schedule as inputs perform all of the data transfer. Distributed storage for pre-
computed interpolation coefficients is also provided and MCT is able to query the coefficients
to derive communication schedules for parallel interpolation. All of the aforementioned
classes have comprehensive method support.

MCT’s native API is Fortran-based, but bindings for C++ and Python are also available. MCT
includes a highly portable build system based on GNU autoconf. MCT’s programming model
derives from Fortran90, comprising module use to access MCT classes and methods,
declaration of variables of MCT’s datatypes, and invocation of MCT’s methods to perform
coupling operations. To use MCT, the coupled model developer first uses their application
knowledge to locate logical interaction points in the legacy subsystem model. Once this
assessment is made, the user first adds code to the model to declare and initialize MCT’s main
datatypes for coupling. The user inserts MCT handshaking calls between model pairs to
initialize the communication schedules. With the “run” methods of the model, the user places
the calls to load the model’s data in to the MCT datatype and then call MCT’s parallel
communication and/or interpolation methods
The most difficult steps conceptually are defining the virtual linearization of mesh and index
spaces to support the MCT communication methods. We find that most new users of MCT
are able to build their own MCT-based parallel coupled models after experimenting with the
short example codes bundled in the MCT distribution, and reading and refactoring their
source code. The ease-of-use is the primary benefit of using MCT while its main limitation is
a lack of support for internal computation of interpolation weights and tools for MPI
communicator construction. MCT is robust; it is the basis of the coupler in all versions of the
U.S. Community Climate System Model since 2004 (CCSM3, CCSM4 and CESM1),

16

supporting literally thousands of model years of coupled climate integration by a community
of hundreds of scientists.
When considering MCT’s future development, the arrival of exascale presents the most
challenges. The paucity of per-core memory at exascale means copying field data and
replication of domain decomposition descriptor data will have to be revisited. Field data
copying could be obviated through use of general mesh representation software in all
components. The domain decomposition descriptor problem may be attacked by using space-
filling curves as virtual linearizations. Tolerating faults and changing pools of processors
mean MCT’s assumption of a static pool will also have to be revisited. At present, MCT
supports application on tens of thousands of processors and is well positioned for future
coupled model challenges.

17

The dynamic parallel O-PALM coupler
by Andrea Piacentini, Thierry Morel, Anthony Thévenin, Florent Duchaine (CERFACS)

Since 1996, CERFACS is developing the PALM coupler, which is currently used for more
than 50 research and industrial projects, ranging from operational data assimilation, to multi-
physics modelling, from climate change impact assessment to fluid and structure interactions.
O-PALM is the open source version of PALM, distributed under the LGPL license. This new
distribution policy arises from the consideration that the coupler has reached a high degree of
maturity and stability. This makes easier to set up new coupled applications and allows other
developers to contribute to the coupler evolution.

At the very origin of the project there was the commitment to provide the software backbone
for the implementation of operational data assimilation suites. In particular, the French
oceanography project MERCATOR was facing the challenge to set up a completely new
operational forecast and assimilation system. The choice of the model configuration was not
yet finalized, there were several candidate assimilation methods to test, there were different
kinds of observations to handle and the same system should have been used for research and
operations. All these needs of flexibility lead to the implementation of the assimilation suite
as a coupling between model, observations handling, error statistics and algebra instead of
hard-coding data assimilation routines in the model, or vice-versa.
Some data assimilation algorithms are based on an iterative minimization: this implies the
repeated execution of the tasks and the total number of iterations is not necessarily known
beforehand. Moreover, in some configurations some tasks are activated only if some
observations are available at run-time. This specific requirement imposed to conceive a
coupler of independent parallel codes capable to deal with complex coupling algorithms
allowing for the conditional and/or repeated execution of the coupled components. The main
goals and constraints were user friendliness, modularity, portability and high performances on
parallel computers. OASIS was not a suitable choice for the lack of the dynamic aspects. On
the other side, not all the OASIS features were needed for data assimilation at that time, in
particular all the grid to grid interpolation issues. This lead to the design of a new MPMD
dynamic parallel coupler based on the MPI message passing and process management
standard library.
In our definition, a dynamic coupler has to fulfil three main requirements:

• process management: this means that the coupler has to be able to start and
synchronise the tasks and to handle algorithms with loops and conditional switches.
• buffered communications: in order to grant full flexibility, avoiding deadlocks
dependencies on the production and reception order, at least the production side of a
communication has to be non blocking. This requires the explicit handling of a storage
space for pending communications. This feature allows for some extra possibilities, such as
the linear combination of cumulated fields and the explicit permanent storage of objects
that are to be repeatedly received.
• object versioning: the flexible use of a temporary storage space for parallel
communications requires special care to grant the coherency of the stored global objects.
The Last In Only Out paradigm is adopted: every new version of an object replaces the
previous ones. Nevertheless, for parallel communications, we count a new version of an
object only when all the processes of the producing code have provided their contributions.
For loosely synchronised codes, it implies the introduction of stamps to keep track of what
version of an object new contributions belong to.

18

The same way, in a parallel coupling, a coupler has to deal with two levels of parallelism:
• Concurrent tasks parallelism: independent tasks can run concurrently on separate sets
of processes. The coupler has to deal with the concurrent execution, to establish all the
needed intercommunication contexts and to grant synchronisation.
• Distributed coupled codes: as a second level of parallelism we account for the inner
parallelism of the coupled codes, mostly related to data distribution. The coupler has to
grant private and robust intracommunication contexts and, most important, to be able to
manage the data exchanges between sets of processes, including the remapping between
codes with different distributions of the same physical objects.

Since one of the main aims of coupling is the reuse of legacy codes, we tried to reduce the
intrusiveness of the coupling instructions in the source codes. For this reason we adopted the
so-called end point communication paradigm: the producer of an object does not know
anything about the recipients (if any) and the other way round. The coupler makes the
matching. In order, once more, to minimize the interventions in the codes, we defined a
reduced set of multi-language API calls, complemented by a very detailed Graphic User
Interface: most information - such as the coupling algorithm, the communication patterns and
the parallel distributions - is easily described in the graphic interface. The changes in the code
have minimal impact and, because of the use of the one-sided communications paradigm, they
are independent of the specific coupling algorithm.

The last constraints that drove the design of PALM are related to its uses and diffusion. The
operational usage imposes robustness and high performances. This not only determined some
implementation choices, but it also lead to the integration in PALM of a real-time monitor,
allowing to display in the graphic user interface the status of the execution while running and
of a performance analyser that works on trace files and helps tuning and optimising the
coupled application. For research applications there are other criteria, such as portability, that
imposed to rely on standard coding and message passing techniques) and user friendliness.
The latter not only drove the design of the Graphic User Interface, but it lead also the the
introduction of an algebra toolbox providing a palette of predefined generic algebraic
operations ranging from BLAS to parallel linear algebra solvers and minimisers that can be
coupled to any other user defined code.
The coupler implementation went through several steps. At the very beginning of the project,
when the MPI2 standard was recently published, but hardly any complete and robust
implementation was available, we implemented an MPI1 emulation based on a pool of idle
processes, released under the name of PALM_RESEARCH, later changed into PALM_SP. It
was dedicated to functional tests, but in practice it proved to be very effective in some cases
and it still used for some full size applications. Some interesting features of this first
implementation could now be seen as possible optimisations under some conditions and will
be hopefully reintroduced in the current PALM version in a near future.
In 2003 we released the first fully MPMD version of PALM under the name PALM_MP. It
was based on the MPI2 process management and communication layer. The main components
of PALM_MP are:

• The scheduler that handles the process management and the execution of the coupled
components accordingly to the algorithm described in the user interface. PALM can
schedule several parallel codes to run concurrently to perform independent tasks if enough
resources are available. Since starting an independent executable always causes a
overhead, PALM offers the option to merge into a single executable the coupled
components that are started in a sequence.

19

• The optimised communication scheme managed by a driver that takes care of the data
transfer between parallel programs. This is one of the most evolved components of PALM
and handles very complex communication patterns with some very practical features, such
as the remapping of objects exchanged by parallel codes with different distributions, the
selection of object subsets entirely from the user interface, the presence of an explicitly
managed permanent repository for objects to be repeatedly received.

Since then the coupler has been constantly enhanced and optimised. With respect to
PALM_MP, the current O-PALM release offers

• the possibility to interface commercial black-box codes (such as Fluent, Abaqus
MSC/MARC) by the use of external dynamic libraries and/or a socket based layer
• a simplified working mode entirely compliant with the MPI-1 library
• the optimisation of repeated well synchronised communications that don't require the
intervention of the driver
• the enhancement of the parallel algebra toolbox that is soon going to include the
CWIPI interpolation library from ONERA for the grid to grid remapping.

Current PALM applications largely go beyond data assimilation and cover many fields of
multi-physics coupling ranging from oceanography to hydraulics, from hydrology to
agronomy, from aeronautics to space engineering and so on. Some of them are particularly
representative of the advantages coming from the dynamic coupling and from the user
friendliness of the API's and of the user interface. For instance we could mention the use of
PALM for the shape optimisation of a combustor cooling system. In this kind of applications,
several instances of a distributed CFD code run in parallel and are dynamically driven by a
minimisation algorithm. Another significant application is the coupling of an adaptive 2D
surface biosphere model to different parallel atmosphere circulation limited area models. In
such a case, not only the dynamic features of PALM can easily take into account the adaptive
model, but also the compact syntax used to describe data exchanges allows for a quite generic
implementation with different atmosphere models. Some full size, near real time applications,
like the operational ocean data assimilation and forecast suite of the MERCATOR operational
oceanography centre or the air quality data assimilation and forecasting system Valentina,
based on the MOCAGE chemistry and transport model, provide a very satisfactory test bench
for the PALM performances in large scale parallel applications. Finally we should mention
the recent use of PALM for the implementation of a demonstrative data assimilation suite
based on a 1D hydraulic model used in flood forecasting. The graphic algorithm
representation proves to be a very useful pedagogical tool. Furthermore, the generic
formalism allows for the application of the demo suite to real life applications with no
changes in the code lines.
The open source distribution of O-PALM is the most suitable environment to accept
collaborations and contributions on the coupler development. Among the most important
technical challenges for the evolution of O-PALM towards exascale applications, there is the
search for the best trade-off between a centralised and a fully distributed approach. If on one
side process management and monitoring is a key issue for dynamic coupling, it imposes an
overhead and a risk of bottlenecks for MPP applications. Optimisations bypassing the PALM
scheduler and launcher are under study, but they have to keep the capability of reorganizing
the layout of the application in case, for instance, of automatic load balancing or adaptive
meshes. The same considerations apply for the communication handling: to obtain very
effective parallel communications on MPP configurations, we'll have to look the best
compromise between flexibility and monitoring on one side and performances on the other.

20

In particular, for climate modelling applications, the use of O-PALM and the CWIPI
interpolation library (with specific enhancements) has to be thoroughly studied and evaluated
on test cases of increasing complexity and size.

21

OASIS, a coupler for climate modelling
by Sophie Valcke (CERFACS)

1. Design goals and strategy

In 1991, CERFACS began to contribute to climate modelling by assembling ocean and
atmosphere General Circulation Models developed independently by different groups. After
an initial period of investigation, a decision was made to implement a technical coupling layer
between the ocean and atmosphere components in the form of an external coupler, i.e. a
separate executable performing the regridding of the coupling fields and a coupling library
linked to the component codes. This choice ensured a minimal level of interference in the
existing codes (low intrusiveness) while focussing on modularity and portability. Two years
later, a first version of the OASIS coupler was distributed to the community. The OASIS3
version [Valcke2006], widely used in the climate modelling community today, is the direct
evolution of this first version. In 2001, in the framework of the EU PRISM3 project, during
which active collaboration took place with NEC Laboratories Europe (NLE-IT), SGI and the
French Centre National de la Recherche Scientifique (CNRS), the development of a new fully
parallel coupler, OASIS4 [Redler2010], began targeting higher resolution climate simulations
on massively parallel platforms. Parallelism and efficiency drove OASIS4 developments, but
the concepts of portability, flexibility and low intrusiveness that made OASIS3 a success were
maintained.

2. Implementation

OASIS3 and OASIS4 are portable sets of Fortran and C routines. After compilation, they
form a separate Driver & Transformer executable (D&T) and a model coupling interface
library, the PSMILe, that needs to be linked to and used by the component models.

Coupling configuration

At run time, the D&T first reads the coupled run configuration defined by the user and
distributes the corresponding information to the different component models. This user-
defined configuration contains all coupling options for a particular coupled run, e.g. the
source and target components, the exchange period, and the regridding chosen for each
coupling exchange. During the run, the Driver-Transformer executable and the component
model’s coupling interface perform appropriate exchanges based on this configuration. With
OASIS3, the configuration information is contained in a text file while with OASIS4 it is
provided in XML4 files. A Graphical User Interface (GUI) facilitates the creation of those
XML files.

Process management

In a coupled run using OASIS3 or OASIS4, the component models generally remain separate
executables with main characteristics, such as the general code structure and memory
management, untouched with respect to the uncoupled mode. It is therefore the user’s
responsibility to ensure that the component models coherently define some global parameters
such as the total run duration, the calendar, etc. If a complete implementation of the MPI2 is

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
3	 	 http://prism.enes.org

4	 	 Extensible Markup Language, http://www.w3.org/XML/

22

available, the user has to start only the OASIS D&T which then launches all remaining
component executables; the advantage of the MPI2 approach is that each component keeps its
own internal communication context unchanged with respect to the standalone mode. If only
MPI1 is available, the OASIS Driver and the component model executables must be all
started at once in the job script in a "multiple program multiple data" (MPMD) mode; in this
case, OASIS needs to recreate a component model communicator that must be used by the
component model for its own internal parallelisation

Communication: the OASIS PSMILe library

The OASIS3 PSMILe prism_put interface (see below) provides a method to send a field into
the OASIS3 D&T which then can gather the whole coupling field, transform or regrid it, and
redistribute it to the target component model processes. The OASIS3 D&T can be parallel,
each process treating a subset of complete coupling fields; this results in a pseudo-
parallelisation of OASIS3 D&T on a field-per-field basis.

With the OASIS4 PSMILe, the communication is more efficient. In a first step, envelopes of
the grid partitions residing on each process are exchanged between source and target
processes and intersections are identified. For each target point falling into an intersection, a
multigrid algorithm with a refinement factor of two in each direction is then used to perform
the neighbourhood search, i.e. to identify the source cell containing the projection of the target
point and its source neighbours. When the source grid is partitioned, the OASIS4 PSMILe
performs an additional search step called the parallel global search: for the target grid points
falling near the source partition border, the neighbours are also searched for on adjacent
partitions. This ensures that the regridding result is independent of the source partitioning. At
the end of the neighbourhood search, each source process holds different lists, each list
containing the information about the target points located in the intersection of a target
process domain with its local domain and about the source neighbour points needed for the
regridding of these target points. These lists are equally distributed over the D&T processes,
resulting in an effective parallelisation of the D&T over the lists. During the exchange phase,
each D&T process receives the grid point field values corresponding to its list(s), calculates
the regridding weights and applies the weights. The data are sent upon request from the
respective target process (i.e. when a prism_get is called in the target component code). The
OASIS4 D&T therefore acts as a parallel buffer into which the transformations take place.

Coupling field transformation and regridding

OASIS3 offers different transformations for 2D coupling fields expressed on grids in the
Earth spherical coordinate system that are regular in longitude and latitude, stretched, rotated,
Gaussian reduced, and unstructured. The regridding algorithms available, taken from the
Spherical Coordinate Remapping and Interpolation Package (SCRIP) library [Jones1999] are
distance-weighted-nearest-neighbour, bilinear, bicubic, conservative remapping and user-
defined regridding (the weights and addresses are pre-defined by the user in an external file).
Additional transformations such as time accumulation or averaging, correction with external
data read from a file, linear combination with other coupling fields, addition or multiplication
by a scalar and global conservation are also available.

OASIS4 offers the same regridding options as OASIS3 for 2D coupling fields. In addition,
OASIS4 supports 3D distance-weighted-nearest-neighbour and trilinear regriddings that are
3D extensions of the 2D SCRIP algorithms. The 3D implementations are currently being
validated. Time accumulation or averaging, addition or multiplication by a scalar, and

23

gathering/scattering (required when the grid definition includes all masked and non masked
points but when the coupling field itself gathers only non masked points) are also available.
An important limitation of OASIS4 is that unstructured grids are not yet supported.

3. How to use the software, community

To communicate with other component models, a component model needs to call few specific
OASIS PSMILe routines. The PSMILe API function calls for both OASIS3 and OASIS4 can
be split into three phases. The first phase includes calls for the coupling initialisation, the
definition of the grids (i.e. the grid point and corner longitudes and latitudes), the description
of the local partition in a global index space, and the coupling field declaration; the second
phase comprises receiving and sending of the coupling fields (by calling respectively a
prism_get or a prism_put routine) usually implemented in the model timestepping loop, while
the third phase terminates the coupling. For both OASIS3 and OASIS4, the sending and
receiving of data follow the principle of “end-point'' data exchange. The target component of
a prism_put or the source of a prism_get for each field as well as the exchange frequency is
defined by the user in the configuration file and the coupling exchanges take place according
to the user external specifications. The target and the source can be another component or a
file as the PSMILe library also supports disk I/O based on GFDL mpp_io library
[Balaji2001].

Today, both the widely used OASIS3 coupler and the new fully parallel OASIS4 coupler are
available. OASIS3 is used today by about 30 different climate modelling groups in Europe,
Australia, Asia and North America. The current user community of OASIS4 is growing, and
use of OASIS4 has already shown promising results in different configurations. OASIS4 has
been used for 3D coupling between atmosphere and atmospheric chemistry models at
ECMWF, KNMI and Météo-France in the framework of the EU GEMS project and is still
used in the following EU MACC project. Currently, OASIS4 is used at SMHI for regional
ocean-atmosphere coupling applied to the Arctic region, at the Bureau of Meteorology (BoM)
in Australia for regional ocean-atmosphere coupling, and at the Alfred Wegener Institute,
(Bremerhaven, Germany) for 2D global ocean-atmosphere coupling. Global ocean-
atmosphere coupled models are also being currently set-up with OASIS4 at the MPI-M and at
CERFACS.

4. Benefits and limitation

OASIS3 performances
OASIS success up to now can be explained by its great flexibility, by its low intrusiveness in
the component codes, by the active support offered by the development team to the users, and
the great care taken to constantly integrate the community developments in the official
version.
The OASIS3 coupler is certainly limited in parallelism and will eventually become a
bottleneck in the simulation on massively-parallel platforms. However, thanks to its pseudo-
parallelisation on a field-per-field basis, OASIS3 has been used recently in a few high-
resolution coupled simulations without introducing significant overhead in the simulation
elapsed time. For example, OASIS3 is used in the high-resolution version of the Hadley
Centre coupled model to couple the atmospheric Unified Model (UM) with a horizontal
resolution of 432 x 325 grid points to the ocean NEMO model at a horizontal resolution of ¼
degree; the coupling frequency is 3 hours, XXX coupling fields are exchanged, and the
coupled model is run on an IBM power6 192 cpus for the UM, 88 cpus for NEMO, and 8

24

cpus for OASIS3. In this configuration, the coupling overhead was observed to be less than
2% in elapsed time.
Recently, the resolution of EC-Earth was increased for the atmospheric model IFS to T799
(~25 km) and to the ORCA0.25 configuration (~¼ degree) for NEMO ocean model. 20
coupling fields were exchanged at a coupling frequency of 3 hours. This was run on the
Ekman cluster (1268 nodes of 2 quadripro AMD Opteron, i.e. a total of 10144 cores) with
different numbers of cores for IFS, NEMO and OASIS3. It was observed that OASIS3 elapse
time of ~6 seconds is non negligible when it runs in mono-processor mode. In this case, the
coupling induces a significant overhead of ~13% in elapse time with respect to the IFS
standalone run; this is true even if OASIS3 interpolates the fields when the fastest component
waits for the slowest as the OASIS3 cost itself is larger than the component imbalance. But
when the parallelism of OASIS3 increases (going from 1 to 10 processes), OASIS3 elapsed
time decreases and its cost is nearly “hidden” by the component imbalance. In this case, the
overhead decreases to less than 3%. Of course, this way of “hiding” the cost of OASIS3
works only if there is some imbalance of the components elapsed time which allows OASIS3
to interpolate the fields when the fastest component waits for the slowest. If the components
were perfectly load balanced, then the OASIS3 cost, even if lower when OASIS3 is used in
the pseudo-parallel mode, would be directly added in the coupled model elapse time.

OASIS4 performances
The performance of the OASIS4 multi-grid search was analysed in detail by comparing it to
the OASIS3 sequential search (see [Redler2010]). Even at relatively low resolution (2244 and
4692 grid points for the atmosphere and the ocean), it was observed that OASIS3 is about two
times slower than OASIS4. The difference gets bigger with increasing resolution: in fact, the
time required for the neighbourhood search increases with O(N2) for OASIS3 where as it
increases only with O(N) for OASIS4. With ~300 000 grid points for the atmosphere and for
the ocean, the search in OASIS3 is about 170 slower than the search in OASIS4. This clearly
demonstrates the benefit of the multi-grid neighbourhood search when compared to a classical
search and the increased general performance of OASIS4 over OASIS3 even in this simple
non-parallel case.

Regarding the scalability of OASIS4, some first tests of the PSMILe library and D&T
scalability were done and are reported in [Redler2010]. Up to 16 cpus, the PSMILe and the
D&T show a good scalability. These first tests on the PSMILe and the Transformer scalability
are encouraging and can be used as a proof-of-concept. Additional tests on much greater
numbers of processes will need to be carried out before any firm conclusions can be drawn.

5. Future plans

In conclusion, one can say that OASIS3 is stable and well debugged, but it is more
performance limited than OASIS4, which continues to undergo validation, especially in the
fully parallel cases. Within the framework of funded projects work continues to establish
comprehensive services around OASIS through a portal offering documentation, user guides,
tutorial, FAQs, user forum and tips for best practices, and to extend the existing functionality.
One example of such an initiative is the InfraStructure for the European Network for Earth
System Modelling (IS-ENES), a 4-year project started in March 2009 that brings about 90
person-months of funding for OASIS development and user support, and into which a fruitful
collaboration with the Deutsches Klimarechenzentrum GmbH (DKRZ) is currently taking
place.

25

Currently, CERFACS and CNRS are committed to support the development and maintenance
of the OASIS software. However, CERFACS and CNRS permanent resources devoted to the
OASIS development are most probably undersized given the large OASIS user community
and the always evolving complexity of computing platforms used in climate modelling.
Therefore CERFACS’s current objective is to establish an official Memorandum of
Understanding between the largest institutions using OASIS into which each partner would
engage in spending some permanent resources on OASIS. Thanks to this MoU, OASIS
hopefully will remain for the coming years a great example of successful community
software.

Acknowledgements: Part of this work has been funded by the EU FP7 IS-ENES project
(Contract GA No: 228203).

References

• [Redler2010] R. Redler and S. Valcke, 2010. OASIS4, A Coupling Software for Next
Generation Earth System Modelling. Geosci. Model Dev., 3, 87-104.

• [Valcke2006] S. Valcke, 2006. OASIS3 User Guide (prism_2-5), Technical Report
TR/CMGC/06/73, PRISM Report No 2, CERFACS, Toulouse, France. 60 pp

• [Balaji2001] Balaji, 2001: Parallel Numerical Kernels for Climate Models, ECMWF
TeraComputing Workshop 2001, World Scientific Press, Reading.

• [Jones1999] Jones, P.: Conservative remapping: First- and second-order conservative
remapping, Monthly Weather Review, 127, 2204–2210, 1999.

26

The GFDL Flexible Modeling System FMS
by Balaji (Princeton University)

The GFDL Flexible Modeling System (FMS) is an early example of a modeling framework,
a comprehensive programming model and toolkit for the construction of coupled climate
models. The “sandwich” architecture is fairly typical of such frameworks. User code, that is
to say a set of routines expressing scientific algorithms, is written following the conventions
of a standard infrastructure layer that provides useful and common technical services such as
I/O, exception handling, and most importantly, operations on distributed grids and fields.
Such standard high level expressions of parallelism, independent of the underlying hardware
architecture, and uniformly expressed on all platforms, are an area of keen research interest.
Balaji and Numrich (2005) provide an overview of the field

The climate system is composed of hierarchies of interacting physical components, and it
is natural to think of constructing models of such systems out of interacting code
components. Component-based design of model codes is based on defining standards for
what a component interface looks like: a community of scientists and developers that agree to
adhere to a given standard component interface (SCI) set can then distribute development
amongst themselves, confident that their own independently developed components will
interact correctly with others within the same modeling framework.

The FMS coupler is a domain-specific SCI: it is written quite narrowly to support ESMs.
It is designed to address the question of how different components of the Earth system, say
atmosphere and ocean, are discretized. Earlier generations of climate models used the same
discretization, or simple integer refinement, for all components: thus, data exchange between
components was a relatively simple point-to-point exchange. But any limitation on resolution
of one component necessarily imposed itself on the other as well. Now it is increasingly
common for each model component to make independent discretization choices appropriate
to the particular physical component being modeled. In this case, how is, say a sea surface
temperature from an ocean model made available to an atmosphere model that will use it as
a boundary condition on a different spatial grid ?

This is the regridding problem, subject to the following constraints when specialized to Earth
system models:

• Quantities must capable of being globally conserved : if there is a flux of a quantity
across an interface, it must be passed conservatively from one component to the other. This
consideration is less stringent when modeling weather or short-term (intraseasonal to
interannual) climate variability, but very important in models of secular climate change,
where integration times can be O(106) − O(108) timesteps.

• The numerics of the flux exchange must be stable, so that no limitation on the
individual component timestep is imposed by the boundary flux computation itself.

• There must be no restrictions on the discretization of a component model. In
particular, resolution or alignment of coordinate lines cannot be externally imposed. This
also implies a requirement for higher-order interpolation schemes, as low-order schemes
work poorly between grids with a highly skewed resolution ratio. Higher-order schemes
may require that not only fluxes, but their higher-order spatial derivatives as well, be made

27

available to regridding algorithms. The independent discretization requirement extends to the
time axis: component models may have independent timesteps. (We do have a current
restriction that a coupling timestep be an integral multiple of any individual model timestep,
and thus, timesteps of exchanging components may not be co-prime).

• The exchange must take place in a manner consistent with all physical processes
occurring near the component surface. This requirement is highlighted because of the unique
physical processes invoked near the planetary surface: in the atmospheric and oceanic
boundary layers, as well as in sea ice and the land surface, both biosphere and hydrology.

• Finally, we require computational efficiency on parallel hardware: a solution that is
not rate-limiting at the scalability limits of individual model components. Components may
be scheduled serially or concurrently between coupling events.

The specificity of the problem that the FMS coupler is designed to address distinguishes it
from more general component frameworks such as ESMF. Unlike an ESMF application,
which can be recursively constituted out of components performing any function at all, the
FMS coupler recognizes only a few components that may be on independent grids: an
atmosphere, an ocean surface, a land surface, and an ocean. The ocean surface also represents
the sea ice. Any other components inherit a grid from these, e.g atmospheric physics and
chemistry from the atmosphere; terrestrial biosphere, river and land ice components from the
land surface; marine biogeochemistry from the ocean.

The SCI for FMS is therefore not phrased in terms of a generic “component” as in
ESMF. Instead, there are interfaces or “slots” for each of the specific components listed
above. For instance, an ocean model would encode its state in terms of specific data
structures to hold the fields it exchanges with other components, called ocean boundary
type and ocean data type. It must provide calls named ocean model init and ocean model end
for initialization and termination, and a routine called update ocean model that steps the
model forward for one coupling timestep. These calls all have a specific syntax. Each slot also
includes the possibility of a null or “stub” component if that component is not needed, as well
as a “data” component (where for instance the ocean is replaced by a dataset). In addition
we provide a data override capability for fine-tuned sensitivity studies, where individual
fields in the model can be overridden by a dataset.

Fluxes at the surface often need to be treated using an implicit timestep. Vertical diffusion in
an atmospheric model is generally treated implicitly, and stability is enhanced by computing
the flux at the surface implicitly along with the diffusive fluxes in the interior.
Simultaneously we must allow for the possibility that the surface layers in the land or sea ice
have vanishingly small heat capacity. This feature is key in the design of the FMS coupler.
This is a tridiagonal matrix inversion which can be solved relatively efficiently using an up-
down sweep. The problem is that some of the layers are the atmosphere and others are in
the land. Moreover, if the components are on independent grids, the key flux computation at
the surface, to which the whole calculation is exquisitely sensitive, is a physical process
(e.g Monin and Obukhov, 1954) that must be modeled on the finest possible grid without
averaging. Thus, the exchange grid, on which this computation is performed, emerges as an
independent model component for modeling the surface boundary layer.

28

The general procedure for solving vertical diffusion is thus split into separate up and
down steps. Vertically diffused quantities are partially solved in the atmosphere
(known in FMS as the “atmosphere down” step) and then handed off to the exchange
grid, where fluxes are computed. The land or ocean surface models recover the values
from the exchange grid and continue the diffusion calculation and return values to the
exchange grid. The computation is then completed in the up-sweep of the atmosphere.
Note that though we are computing vertical diffusion, some spurious horizontal
mixing can occur as the result of regridding. The exchange grid is described in detail in
Balaji et al (2006).

Data assimilation for coupled models is an exciting emergent field of research.
Data assimilation includes a class of methods known as ensemble filters (Kalnay, 2002),
which involve sampling the error space of observations by running a model ensemble:
multiple copies of a model perturbed to span that space.

The FMS coupled modeling system includes a sophisticated data assimilation system,
the parallel ensemble adjustment Kalman filter (Zhang et al, 2005). The parallel
filter consists of running each ensemble member as a concurrent component on an
independent set of processors, and the slot replaced by the filter.

The ensemble filter has been used on 24-member ensembles of CM2.1 with no loss of
performance versus ensemble size. A recent development has been the construction of a
coupled data assimilation system (CDAS) where ensemble methods simultaneously
assimilate both atmosphere and ocean data.). The CDAS has been the basis for a set of
pioneering studies showing the influence of initial conditions on simulations of recent
climate history on decadal timescales.

In summary, this section has presented a review of the key features of how coupling is
performed in the GFDL Flexible Modeling System. A standard coupling interface with
slots for atmosphere, land surface, ocean surface, and ocean components is coupled along
with a surface boundary layer component on an exchange grid (Balaji et al, 2006).
Components live within a single executable, but can be scheduled serially or
concurrently with others. The code has been shown to be scalable to O(1000)
processors, with fast surface processes coupling every atmospheric timestep (typically �
15 min) and slow processes coupling every ocean timestep (typically 1 hour). Coupling
is conservative to up to second-order accuracy. The FMS superstructure also includes
support for data assimilation using ensemble filter methods. The coupled data
assimilation system has been run on IPCC-class models assimilating both atmosphere
and ocean fields. An ensemble size of up to 24 has been used with no significant loss of
scaling.

At the moment of writing, FMS and its coupler have been in active use for over a decade.
Its feature list and its performance still place it at the forefront of the field.

References

• Balaji V, Numrich RW (2005) A Uniform Memory Model for Distributed Data

29

Objects on Parallel Architectures. In: Zwieflhofer W, Mozdzynski G (eds) Use of
High-Performance Computing in Meteorology, World Scientific Publishing Co., pp
272–294

• Monin, A. and A. Obukhov,1954. Basic laws of turbulent mixing in the ground layer
of the atmosphere. Tr Geofiz Inst Akad Nauk SSSR 151:163–187

• Balaji V., J. Anderson, I. Held, M. Winton, J. Durachta, S. Malyshev, R. J. Stouffer,
2006. The Exchange Grid: a mechanism for data exchange between Earth System
components on independent grids. In: Deane A, Brenner G, Ecer A, Emerson D,
McDonough J, Periaux J, Satofuka N, , Tromeur-Dervout D (eds) Parallel
Computational Fluid Dynamics: Theory and Applications, Proceedings of the 2005
International Conference on Parallel Computational Fluid Dynamics, May 24-27,
College Park, MD, USA, Elsevier

• Kalnay E (2002) Atmospheric Modeling, Data Assimilation and Predictability.
Cambridge University Press

• Zhang S., M.J. Harrison, A.T. Wittenberg, A. Rosati, J.L. Anderson, V. Balaji,
2005. Initialization of an ENSO Forecast System using a Parallelized En- semble
Filter. Mon Wea Rev 133:3176–3201

30

The Bespoke Framework Generator BFG

by Rupert Ford (U. Manchester)

1. Design goals and strategy

BFG was originally developed as a potential solution to an analysis of the Met Office's
coupling requirements [REQS]. These requirements included high performance (in-part
to support both the Climate and NWP communities), flexibility (in terms of coupling
models together and integrating external models) and future-proofing (to avoid major
changes to the scientific software in the future). BFG was subsequently extended to
support the requirements of the GENIE community model [BFG2] and the CIAS
Integrated Assessment System [CIAS].

Rather than being a coupler in its own right, BFG is designed to allow the user to choose
the coupling technology, i.e. a specific coupler and/or communications infrastructure,
they would like to use for a coupled model run. Given the required information, in the
form of metadata, BFG generates bespoke wrapper code which can be compiled and
linked with the users science code and the coupling technology of choice. Regardless of
which coupling technology the user chooses for their coupled model run, the scientific
code remains unchanged. BFG can, therefore, be thought of as a Meta-coupler.
By separating the implementation of the coupler from the science code the user is given
an additional layer of flexibility. This flexibility can help in terms of portability,
performance, maintenance and future-proofing of the code.

In BFG code developers are encouraged to input and output coupling data in their internal
storage format. A consequence of this philosophy is that data may need to be transformed
when being transferred between models (one important class being re-gridding in ESM).
In BFG, transformation code is specified and treated in the same way as model code. This
approach allows transformations to be mapped to the underlying resources in the most
appropriate manner. In the case that the target framework supports intrinsic
transformations (such as OASIS4) then these transformations can be indicated as being
intrinsic in the BFG metadata and BFG will generate appropriate code (or configuration
files) to use these.
BFG concepts have been purposely designed to be relatively generic. A notable example
is the model interface where one is able to specify models written in a variety of
languages. A related design philosophy is to avoid requiring any domain specific features
and to treat them as optional additions (for example grids in ESM). Thus BFG should be
applicable to other domains and also between domains. Early indications are that this is
indeed the case [CIAS][MD].
2. Implementation (regarding process management, communication/data exchange,
regridding)
The current version of BFG (BFG2) supports models written in Fortran90. Each model
must be written as a module containing one or more subroutines. BFG uses the associated
metadata to generate the required calling (control) code. The coupled model behaviour is
specified by a schedule described in the metadata which supports arbitrary nested loops.

31

As models are written as modules, BFG2 is also able to map models within the coupled
model to a single executable, multiple executables or any combination thereof.

BFG2 supports data being passed to and from module subroutines via arguments and/or
in-place put/get calls. The former approach is similar to that used by ESMF and CPL7
and the latter to OASIS3, OASIS4 and TDT. Each coupling connection can be initialised
(primed) in a variety of ways including from a model or a file.

In the current implementation, data can be passed between models in the following ways:
• Argument passing
• MPI
• OASIS4 calls.

The OASIS4 implementation also supports the specification of grids using an XML
representation of the Gridspec [REF] and the use of intrinsic OASIS4 transformations.

3. How to use the software, community
To use BFG2 you must make your model code conform to the coding rules mentioned
earlier and describe your models interface in (definition) metadata. You then specify how
the models (and transformations) are connected together scientifically (the composition)
and finally you specify how to map the models onto the available hardware and software
resources (the deployment). BFG2 takes the metadata descriptions and translates these
descriptions to appropriate (bespoke) code using xsl transformations with python
wrappers.

BFG has thus far been primarily a prototyping tool. Currently its one use is within CIAS,
a Community Integrated Assessment System [CIAS] where it is used to couple over 20
different model configurations. However, BFG2 is maturing into a tool that could be used
more widely.

4. Benefits and limitations
The BFG approach has the primary benefit of combining the isolation of the science from
the infrastructure and the implementation of a code generation system to provide
flexibility in model composition and deployment onto the available hardware and
software resources.
One key feature of BFG is that it is able to achieve the same performance as hand written
code [BFG2]. The API and the high performance offered by BFG opens up the
opportunity for much finer grain coupling than is typically performed at the moment.

The current BFG2 implementation has a number of limitations:
• One needs to regenerate the framework code whenever any part of the coupling

metadata changes
• The xslt generation software is complex and difficult to manage
• BFG2 does not currently support data partition information which means it can

not support parallel models which are the norm in ESM
• BFG2 only supports one target in a coupled model (with the notable exception of

argument passing) so it is not possible to pass data using ESMF and OASIS4 (for
example) in the same coupled model.

32

5. Future plans
We are currently working on extending BFG2 to support models that have been written in
a less modular way. In particular, codes which are main programs, codes with internal
control and codes where the source code is not available and must, therefore, be treated
as a black box. We are also working on extending BFG2 to support a number of different
languages in order to satisfy the requirements of the IAM community. As an example,
economics models are typically written in GAMS. We are planning to add support for
parallel partitions and subsequently parallel models. For the MPI target we will use MCT
[REF] for the resultant "mxn" communication that will occur. We are also planning to
extend BFG2 to support ESMF, CPL7 and TDT as targets.

Finally, in the slightly longer term, we are interested in the feasibility of using BFG2 to
couple models that are coded to conform to other frameworks by generating appropriate
adaptor code.
References
[BFG2] C. W. Armstrong, R. W. Ford and G. D. Riley, Coupling integrated Earth System
Model components with BFG2, Concurrency and Computation: Practice and Experience,
Vol. 21 No. 6, pp. 767--791, 2009, DOI: 10.1002/cpe.1348.
[CIAS] R. Warren, S. de la Nava Santos, N.W. Arnell, M. Bane, T. Barker, C. Barton, R.
Ford, H.M. Fussel, Robin K.S. Hankin, Rupert Klein, C. Linstead, J. Kohler, T.D.
Mitchell, T.J. Osborn, H. Pan, S.C.B. Raper, G. Riley, H.J. Schellnhuber, S. Winne, D.
Anderson. Development and illustrative outputs of the Community Integrated
Assessment System (CIAS), a multi-institutional modular integrated assessment approach
for modelling climate change. In J. Environmental Modelling and Software, Vol. 23, No.
5, May 2008. ISSN: 1364-8152.

[BFG1] R.W. Ford, G.D. Riley, M.K. Bane, C.W. Armstrong and T.L. Freeman, 'GCF: A
General Coupling Framework', Concurrency and Computation: Practice and Experience
18(2), pp. 163--181, 2006.
[MD] R. Delgado-Buscalioni, P.V. Coveney, G.D. Riley and R.W. Ford, 'Hybrid
Molecular-Continuum Models under the General Coupling Framework' Philosophical
Transactions of the Royal Society of London Series A, 363(1833), pp. 1975--1985, 2005.

[REQS] R.W. Ford and G.D. Riley, Towards the Flexible Composition and Deployment
of Coupled Models. In proc. Tenth ECMWF Workshop on the Use of High Performance
Computing in Meteorology; Realizing TeraComputing. ECMWF, Reading, England, 4-8
November 2002. World Scientific, pp. 189--195, 2003.

33

The OpenMI interface for flexible and dynamic coupling	
by Stef Hummel and Bert Jagers (Deltares)

Introduction
Integrated analysis often requires integrated modeling. This can be done by developing
all-inclusive models, but it is preferable to be able to flexibly combine individual models
or model components, that address specific domains, at run time. This can be realized by
implementing models as shared libraries with a common standardized interface. In the
water sector, in a series of EU-projects that focused on river basin management, the Open
Modeling Interface (OpenMI, see [1] and [2]) has been developed in order to link
together model components from various origins. OpenMI provides a standard model
interface, a reference implementation of that standard, and utilities to support existing
models in adhering to that standard. The OpenMI standard is published by the OpenMI
Association; the reference implementation and the utilities (the so called SDK, Software
Development Kit) are provided as an open source project by the the OATC, OpenMI
Association Technical Committee (see [3] and [4]).
The first version of the Open Modeling Interface (OpenMI) was launched at the end of
2005. Since that time, the user and development community has grown steadily, and
various well known models have become compliant. Because of limitations of this first
version, some of the models did not follow the OpenMI standard interfaces exactly, but
used slight deviations to achieve their goal in a similar style. Improvements were
necessary to become a general interface standard that would not only cover water related
applications, but also other domains. Over the past few years, starting in 2007, a core
group of six institutes has worked on an upgrade of the OpenMI towards version 2.0.
Based on a limited number of use cases as general guidance for improvement, a long list
of improvements was composed. These changes have made OpenMI suitable for a large
range of applications, from non-time dependent Geographical Information Systems (GIS)
towards e.g. master-slave controlled modeling frameworks. The resulting version 2.0 of
the OpenMI standard (see [5] and [6]) has been released in December 2010.

OpenMI concepts

OpenMI provides standardized interfaces to define, describe and transfer data between
software components that run simultaneously, thus supporting systems where feedback
between the modeled processes is necessary in order to achieve physically sound results.
A software component that implements OpenMI standard is called a Linkable
Component. OpenMI allows the linking of models with different spatial and temporal
representations: for example, linking river models and groundwater models, where the
river model typically uses a one-dimensional grid and a short time step and the
groundwater model uses a two- or three-dimensional grid and a longer time step.

The OpenMI standard consists of a set of interface classes, specified in both Java and C#,
that define the behavior of a model component, and that define which quantities can be
exchanged by that component, on which locations and in what time frame.

What, where, when	

34

The run time data exchange between model components is done by means of a
GetValues(…) call, where the argument of this call specifies:

• What is exchanged? This is defined by the IQuantity and the IQuality interfaces
below.

• Where is it exchanged? The location is specified by the so called IElementSet, a
set of ID-based or Geo-referenced locations (see table below).

• When, i.e. at what times is the data needed? This is expressed by the ITimeSet, a
list of time stamps or time spans.

A quantity is specified by

• Caption (“Runoff”)
• Description (optional explanatory

description)
• Value Type (double, integer,

etc.)
• Unit:

• Caption (“CFS”)
• Description (“Cubic feet

per second“)
• ConversionFactorToSI

(0.0283168439)
• OffsetToSI (0)
• Dimension (e.g. L3 T-1)

A quality is defined by its:

• Caption (“Soil Type”)
• Description (optional explanatory

description)
• Categories:

• Caption (“sand 1”)
• Description (“coarse

sand“)
• IsOrdered

	

	

For the definition of locations, the ElementSet, various types are available:

ElementType Description

IDBased ID-based (string comparison).

Point geo-referenced point in the horizontal (XY)-plane or in in the 3-
dimensional (XYZ)-space.

PolyLine geo-referenced polyline connecting at least two vertices in the
horizontal (XY)-plane or in the 3-dimensional (XYZ)-space. The
begin- and end-vertex indicate the direction of any fluxes. Open entity
with begin- and end-vertex not being identical.

Polygon geo-referenced polygons in the horizontal (XY)-plane or in the 3-
dimensional (XYZ)-space. Vertices defined anti-clockwise. Closed
entity with one face, begin- and end-vertex being identical.

	

Linking components
A component specifies its data exchange capabilities by defining input items and output
items. After initialization, the lists of input and output items supported by the Linkable
Component can be queried via the OpenMI interface. Each input item and output item
specifies its quantity or quality, its element set and its time set.
The actual data exchange between components is established by defining provider/consumer
relationships between output items and input items (see Figure 1). The GetValues() call
mentioned above is performed on the output items.

Figure 1: Linking output and input items

If the quantity, the ElementSet or the TimeSet of a certain output does not fit the way the
input item requires it, the output can be adapted by adding an AdaptedOutput to the output.
As the name indicates, an adapted output in its turn is just an output again, so subsequent
adapted output items can be added to the initially created adapted output.

Figure 2 shows an example of some sequences of adapted outputs. It may be clear that the
adapted output approach offers great flexibility in defining the steps that have to be taken to
transform that data from, for example, Output-1 to Input-2 and Input-a.

Figure 2: Flexibility in data transformations by means of Adapted Outputs

Output 1

Output 2

Spatial
adaptation A

Spatial
adaptation B

	

Time
interpolation

	

Time
interpolation

Component
1

Component
3

Input a

Input b

SI-conv.

SI-conv.

Component
2

Input 1

Input 2

Output 3
Input c

Linkable
Component

Linkable
Component

Provider / Consumer
relation

Output
Items

Input
Items

Adapted-
Output

	

The first release of OpenMI included only the GetValues() call to transfer data. Although in
OpenMI 2.0 a SetValues() call has been added to support e.g. parameter sensitivity studies
and data assimilation, the GetValues() call remains the main work horse for OpenMI. It is
closely related to the time progress and synchronization of the overall configuration of
Linkable Components.

Migrating models
From the very start the OpenMI has been designed in such a way that it supports the easy
migration of existing modeling systems. Generally speaking, a model in any programming
language is made OpenMI compliant by re-organizing its code in such a way that it has a
separate initialization, computation and finalization routine, and can accept and provide input
data and results, after which – based on the current reference implementations – a Java and/or
C# wrapper is put around it (see Figure 3). The OpenMI SDK offers utilities to facilitate the
development of such a wrapper.

Figure 3: Wrapping native (e.g. Fortran) code in an OpenMI wrapper

References

[1] The OpenMI Standard, published by the OpenMI Association.
Distribution, news and publications: http://www.openmi.org/,
Developers and users: http://wiki.openmi.org/.

[2] Gregersen, J.B. , P.J.A. Gijsbers and S.J.P. Westen (2007) OpenMI: Open modelling
interface, Journal of Hydroinformatics Vol.9 No 3. pp 175–191

[3] The OpenMI SDK (System Development Kit), provided by the OpenMI Association
Technical Committee [3].
Information on developments: http://wiki.openmi.org/
Source development: http://sourceforge.net/projects/openmi/

[4] The OpenMI Association Technical Committee (AOTC),
OpenMI's core developing team, participants (amongst others):
Deltares (NL), Alterra (NL), DHI (DK), MWHSoft (GB), Bundesanstalt für
Wasserbau (D).
http://wiki.openmi.org/OpenMI+Association+Technical+Committee

[5] Gijsbers, P., Hummel S., Vaneçek S., Groos J., Harper A., Knapen R., Gregersen J.

computational kernel

Initialize

PerformTimeStep

Finalize

Initialize

PerformTimeStep

Finalize

GetValues(…)

Set<varType>(varId)
Get<varType>(varId)

Get<varType>(varId)

SetValues(…)

	

Schade P., Antonelli A., Donchyts, G. (2010) From OpenMI 1.4 to 2.0. International
Congress on Environmental Modelling and Software, July 5 - 8 2010, Ottawa,
Ontario, Canada

[6] Donchyts, G., Hummel S., Vaneçek S., Groos J., Harper A., Knapen R., Gregersen J.
Schade P., Antonelli A., Gijsbers P. (2010) OpenMI 2.0 What’s New. International
Congress on Environmental Modelling and Software, July 5 - 8 2010, Ottawa,
Ontario, Canada

	

	

OOPS - An Object Oriented Framework for Coupling Data Assimilation Algorithms to
Models

by Mike Fisher (ECMWF)

Data assimilation involves a close coupling between the assimilation algorithm and a
numerical model. Observation operators are required to determine model-equivalents of
observations, and the assimilation algorithm must integrate the assimilating model (and
possibly its tangent linear and adjoint) with specific initial and boundary conditions.

Despite this close coupling with the model, the high-level mathematical description of data
assimilation algorithms is essentially model-independent. Moreover, these algorithms can
typically be described in terms of a few operators and vectors.
In the IFS/Arpege code, the close connection between model and data assimilation has lead to
a single monolithic code in which the boundaries between model and assimilation algorithm
have become blurred, and in which it difficult to identify the vectors and operators of the
mathematical description of the algorithm. This makes it difficult to develop new algorithms,
and does not allow the assimilation code to be used with different models.

The Object Oriented Prediction System (OOPS) attempts to address this problem by clearly
identifying the various operators and vectors required by the assimilation algorithm, and
providing clean interfaces between these entities and the model. Since these operators and
vectors are explicitly available, it is straightforward to re-combine them into new algorithms.

The data assimilation algorithm is expressed in a way that is independent of any specific
model. This allows, for example, algorithms to be developed with simple models and then
transferred directly, without any re-coding, to more complex models.

	

	

C-Coupler: A coupler for Earth System Modeling

by Xiaoge Wang[1], Li Liu[1], Guangwen Yang[1,2]

[1] Department of Computer Science and Technology
[2] Center for Earth System Science
Tsinghua University, Beijing, China, 100084
Abstract: This presentation will introduce the project C-Coupler. It will include an overview
of the project, the design goals and technical aspects of C-Coupler.
Project C-Coupler is funded by National High Technology Research and Development
Program of China (863 program) started this year for 3 years. Its goal is to support the earth
system modeling research. In addition to the functions of a typical coupler, such as data
transfer and re-grid between grid components, flux computation, and driver of the system, C-
Coupler needs to support ensemble modeling and embedded regional modeling, and to run
efficiently on large scale parallel computers.
The earth system modeling research community in China currently uses mainly NCAR cpl5
and cpl6 and OASIS3 and OASIS4 for coupling different component models. The demand for
a coupler with more functions and more flexibility and user friendliness is getting higher.

In design of C-Coupler, there are some considerations:
(1) The effort of transform from current couplers to the new one should be minimized.
(2) The advantages of current in-use couplers should be preserved.
(3) The software technologies used in the new coupler should support component-based
programming and software configuration management;
(4) The new features include: more configurable (using GUI and script), Interactive
ensemble, 3D coupling, regional coupling.
(5) High performance in communication, system level load balancing and parallel I/O
operations.

The architecture design of C-Couple is presented in Figure 1 and Figure 2. As shown in
Figure 1, the coupled earth system model (ESM) is consisted of three parts: on the top, there
are the model components, such as atmosphere model, ocean model, etc.; on the bottom, there
are function components and data components; all the components connected to the center
part, C-Coupler, via predefined interfaces. C-Coupler is consisted of interfaces to the
components, configure files and coupling driver code. The configure files and part of the
driver code are generated by configuration system, which is shown in details in Figure 2. As
shown in Figure 2, configuration system is used by component builders, ESM builders and
users to configure the model components, function components, coupling cases and ESM
cases through GUI or script language. The configuration system would access the components
repository and manage the configurations. With the capability of configuration and code
generation, we expect C-Coupler to be more flexible and user friendly. The coupling function
of C-Coupler is also expected to be more extensible.

	

Figure 1: Overview of C-Coupler and coupled earth system model.

Figure 2: Overview of C-Coupler configuration system

	

Some details of configuration are presented. They are model configuration, coupling
algorithm configuration, coupler configuration and ESM case configuration. With the enough
configuration information collected during the configuration stage, the system could generate
the sequence of coupling algorithm objects. This sequence would be used to in the C-Coupler
driver to control the model coupling. The driver uses time-driven policy to drive the
components. It uses a global timer, model components’ time steps, coupling frequencies to
manage the execution of components.
The implementation of first version of C-Coupler is planed to complete by early next year. It
will implement some basic coupling functions that will allow the current version of model
FGOALS to run under C-Coupler. Some more advanced functions, such the support for
interactive ensemble, 3D remapping, embedded regional model coupling, global load
balancing etc., would be implemented in the late version. The evaluation of C-Coupler will
follow the implementation step. It will cover the testing and evaluation on the system integrity
and robustness. After the first version, more efforts will be put on the system scalability,
portability and adaptability.

	

The Model for Prediction Across Scales: meshes and software framework

Michael Duda+, Todd Ringler*, and William Skamarock+
+National Center for Atmospheric Research5
*Los Alamos National Laboratories

1. Introduction

The Model for Prediction Across Scales (MPAS) is a collaborative effort between LANL
(COSIM) and NCAR (MMM) to develop climate, regional climate, and numerical weather
prediction components within a common framework. Currently, a nonhydrostatic atmosphere
model and an ocean model are under development in MPAS, and there are plans to develop an
ice sheet model in the near future. Although the physical domains over which each of these
models simulate are quite distinct, all of the models have in common their use of centroidal
Voronoi tessellations (CVT) with a C-grid staggering, i.e., with the prognosed velocity field
defined in terms of velocities normal to grid cell faces, as their horizontal meshes. The
consequent need for software infrastructure to support finite volume-type modeling on CVT
meshes has motivated the development of a common software framework for MPAS. Of
particular interest to the scientific goals of MPAS is the ability of CVT meshes to provide
smooth mesh refinement according to a user-defined density function, though with this
flexibility come challenges for software infrastructure, and, most likely, for model couplers as
well. In this presentation, we first describe the construction and use of CVTs in MPAS, and
we then outline the MPAS software architecture, pointing out how we anticipate interacting
with coupling packages.

2. CVT meshes in MPAS
As their name implies, centroidal Voronoi tessellations are tessellations of a domain where
each of the cells is a Voronoi region for some generating point; when the generating points
are also the mass centroids of the Voronoi regions with respect to a specified density function,
the Voronoi tessellation is a centroidal Voronoi tessellation. A detailed review of CVTs is
given in Ju et al. (2010). It is precisely the flexibility to specify the density function that
enables MPAS meshes to possess smoothly-changing resolution, and the centroidal
requirement of CVTs leads to meshes — both uniform and variable-resolution — of high
quality. Figure 1a provides an illustration of an SCVT6 mesh with higher resolution targeted
over a region of the Northern Hemisphere; it is worth noting that the mesh is unstructured,
since the cells are not constrained to have a specified number of sides.
For any CVT mesh, the dual mesh, or Delaunay triangulation, provides a connectivity graph
of the cells of the mesh, and by applying existing graph partitioning algorithms to the
connectivity graph, we arrive at a partition of the cells among processors. The collection of cells
in a partition is referred to as a block, and each block is assigned to a parallel task; the parallel
decomposition of an SCVT into 64 blocks is illustrated in Figure 1b. In the MPAS architecture, blocks
represent the basic level of mesh decomposition.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
5	 NCAR is sponsored by the National Science Foundation	

6	 An SCVT is is a spherical centroidal Voronoi tessellation, where the generating points are
constrained to lie on the surface of a sphere
	

	

	

	

 Figure 1: (a) An example of an SCVT with refinement targeted over a region in the Northern
Hemisphere. (b) A parallel decomposition of the SCVT into 64 bocks of cells.

	

3. The MPAS software architecture

At the coarsest level, the MPAS architecture contains three main parts: a driver layer, a model
core, and software infrastructure. Figure 2 illustrates the connections between components of
the MPAS architecture. As in the figure, the driver layer is divided into two distinct parts. The
top-level driver essentially calls init, run, and finalize routines, which are implemented in the
sub-driver. In turn, the sub-driver interacts with both the model core and the infrastructure in
the course of performing work appropriate to the init, run, and finalize routines. The rationale
behind the division of the driver layer into a top-level driver and a sub-driver is heavily
influenced by the desire to run MPAS models as components of larger system models. The
top-level driver may be removed, and its role fulfilled by a coupler or a component driver in
another Earth system model. The routines implemented by the sub-driver may need to be
augmented, depending on the requirements of the driver, though the sub-driver should remain
independent of any particular MPAS core. With this split between top-level driver and sub-
driver, as much driver-level code can be shared between cores as possible, while the amount
of code that needs to be replaced by another high-level driver layer is minimized.

TheMPAS core, which lies between the driver and infrastructure, contains all computational
work that is specific to a particular model. This work can obviously include that of a
dynamical core and physics parameterizations; however, it can also be envisioned as the work
of creating initial conditions or of postprocessing simulation output, for example. In this way,

	

most of the MPAS data flow — from the generation of initial conditions, to model simulation,
to post-processing — can reuse the MPAS software infrastructure, gaining access to
parallelism, I/O, and fundamental data types.

The infrastructure part of the MPAS architecture is roughly divided into four parts: definitions
of derived types, input and output, parallelism, and operators. A domain type encapsulates the
complete computational state for an MPAS task, including information for distributed-
memory parallelism (principally, anMPI communicator), as well as the data to be operated
upon by the task. The data for a task is comprised of one or more blocks, with each block
constituting the fields defined on the partitions of the mesh assigned to the task plus
information about which grid cells of the blocks need to be communicated.
The operators in the MPAS architecture represent, e.g., differential operators for CVT
meshes, interpolation routines, advection operators, and other code that can be re-used by
different MPAS cores. In order to generate customized infrastructure and other code that
would ordinarily require tedious work from the developer of a core, MPAS has adopted a
computer-aided software engineering (CASE) tool called the Registry, which is modeled on a
tool by the same name in the Weather Research and Forecasting model (Michalakes et al.
(2004)). At compile time, the Registry program is first built; then, the Registry parses a text
file — called a registry file — specific to each MPAS core, and, based on the contents of the
registry file, generates Fortran code for core-specific data types, data allocation and
deallocation calls, and I/O calls.
	

	

 Figure 2: The high-levelMPAS architecture with its three main components: the driver layer,
a model core, and	 model infrastructure; the Registry is a CASE tool used to generate
customized DDTs as well as code that would	 be otherwise tedious to write and maintain.	

4. Coupling in MPAS

With the MPAS software in a relatively immature state — the current working framework is still
considereda first prototype, in fact — we have attempted to maintain architectural flexibility so that

	

MPAS models can be coupled using the largest possible range of coupling packages. One method for
coupling MPAS models might involve wrapping the MPAS model core and its supporting
infrastructure code into a component; coupled fields would be exchanged through import and export
states of components, and the control of MPAS execution would be delegated to a higher-level coupler
or coupledsystem driver; this approach is facilitated by, e.g., the Earth System Modeling Framework.
To support coupling in this manner, we envision replacing the top-level driver in MPAS by an external
coupler or driver, and augmenting the implementation of the MPAS sub-driver with routines for
importing and exporting coupled fields. The adaption of the MPAS driver layer to this approach is
shown in Figure 3a.

Another approach to coupling might involve running MPAS as an independent executable, with new
calls to send and receive coupled field placed at appropriate points in the MPAS code. If coupled
fields are exchanged at most once per MPAS time step, a flexible implementation of the MPAS I/O
subsystem to handle the sending and receiving of coupled fields in the same manner as the input and
output of fields may be feasible; this approach is illustrated in Figure 3b. Of course, other paradigms
for model coupling also exist, and these will need to be considered as we continue to evaluate the
design of the MPAS software.

	 Figure 3: (a) Coupling with MPAS as a component may be accomplished by replacing the
top-level driver with a coupler or driver from a larger Earth-system model, and implementing
additional routines in the sub-driver. (b) Coupling via sends and receives of fields could be
accomplished by implementing these calls as I/O.

5. Conclusions

Given that all MPAS models share the same CVT mesh technology, the development of a
common software framework to support modeling on CVT meshes is a logical step. From a coupling
perspective, this common framework implies that, if the software challenges of coupling one of the
MPAS models can be worked out, then coupling any of the other MPAS models comes at virtually no
additional cost, at least from a technical standpoint; we recognize that coupling each model comes
with its own scientific issues. The flexibility of CVT meshes poses challenges for theMPAS software
infrastructure, and any model coupler used by MPAS must also support horizontally unstructured
meshes. To the coupling community, MPAS may present opportunities to test couplers in areas such
as re-gridding, since the meshes for MPAS models could be either configured to have coincident cells
or completely independent meshes at different resolutions.

	

References
Ju, L., T. Ringler, andM. Gunzburger, 2010: Voronoi tessellations and their application to
climate and global modeling. Chapter to appear in Numerical Techniques for Global
Atmospheric Models, Lecture Notes in Computer Science, draft.
Michalakes, J., J. Dudhia, D. Gill, T. Henderson, J. Klemp, W. Skamarock, and W. Wang,
2004: The weather research and forecast model: Software architecture and performance.
Proceedings of the 11th ECMWF Workshop on the Use of High Performance Computing in
Meteorology, G. Mozdzynski, ed., Reading, U.K.

	

	

A Feature Model of Coupling Technologies for Earth System Models
by Rocky Dunlap, Spencer Rugaber, Leo Mark (College of Computing, Georgia Institute of
Technology)
Coupling is essential for implementing multi-physics models made up of two or more
interacting computer simulations. A quintessential example of such coupled models is an
Earth System Model (ESM), which involves several interacting components simulating the
Earth’s atmosphere, oceans, land, and sea ice systems. The software components that link
together and mediate interactions between these models are called couplers. Couplers are
well-known abstractions in the geophysical and other scientific communities, although their
implementations differ vastly. With respect to ESMs, no standardized reference architecture
has emerged. Instead, couplers are designed to address particular modeling situations. The
design space of couplers is constrained by properties of the existing models, such as software
architecture, dependencies on third party libraries, numerical and scientific characteristics, as
well as the nature of the target computational environment.
Because coupling numerical modeling components is a common need, a number of
technologies have emerged in the form of reusable software assets to facilitate building
coupled scientific applications. Developing couplers is difficult requiring expertise in
geoscience, numerical methods, and programming for high performance environments.
Therefore, we seek to support geoscience communities building coupled models through
generative reuse. Specifically, our approach is based on Generative Programming, a software
engineering method for automatically generating members of software families by assembling
reusable components into final products based on a declarative requirements specification.
Couplers can be seen as members of a family of modules with similar requirements (e.g., they
coordinate data communication among models, transform and interpolate field data based on
the numerical properties of the constituent models, and manage use of parallel computing
resources).
A prerequisite to creating couplers generatively is the need to understand the space (domain)
of possible couplers. What features do couplers require? What features are common across
couplers and what features vary? How should those features be implemented to address the
structure of existing modeling components? A key step in generative programming is feature
analysis in which similarities and variations among members of a family of systems are made
explicit. Feature analysis determines a multi-dimensional design space for describing a family
of applications. The output is a feature model that identifies a concise and descriptive set of
common and variable properties of domain concepts. The feature model represents the
intention of a software family and can be used to infer the set of possible family instances,
called the extension. Once a feature model has been produced, elements can be selected to
produce a configuration, describing a desired family member. An automated generator can
then be used to produce the actual code for that member.
One way to view a domain is as a set of related software applications. Taking this view, a
feature analysis of couplers involves studying existing software systems used for coupling
ESMs. The ESM community has already developed reusable software assets in the form of
coupling libraries and frameworks, and we have conducted a feature analysis of these existing
software assets in support of a generative programming tool we are building. While no two
systems are identical, our analysis has revealed significant overlap in the features supported
by these coupling technologies. However, there are also significant variations in what features

	

are supported and how the features are implemented. A feature model of couplers makes these
similarities and differences explicit.
Our work is similar to the domain analyses done by the Earth System Curator and Metafor
projects, but we focus specifically on couplers and coupling technologies for ESMs. Our
starting point is existing couplers and coupling technologies, which gives credibility to the
analysis and ensures that the results are a true reflection of state-of-the-practice models.
Feature analysis allows us to uncover the breadth of features supported by coupling
technologies while leaving room to go deeply into one particular feature when desired.
Features are abstract, supporting the specification of relevant aspects of coupling
technologies, without being tied to specific programming constructs or architectural
structures. Features may be functional or non-functional in nature - that is, we can specify not
only what kinds of operations are supported, but how they are accomplished (e.g., features
related to performance and security). The same feature may manifest itself quite differently
across the range of coupling frameworks. Therefore, we can specify that a feature exists
without saying too much about how it is implemented.

Coupling Technologies Analyzed
The coupling technologies we analyzed are currently used in Earth System Models or are
under active development. Our goal is to paint a relevant picture of the state of the practice for
ESM couplers. Table 1 lists the coupling technologies we considered. It is important to note
that the studied technologies each have a different scope of use. As such, this is not an apples-
to-apples comparison but is intended to reveal the set of features that are relevant when
writing couplers for ESMs and, ultimately, for generating them.

	

Acronym Full Name Reference Latest Released Version

BFG2 Bespoke Framework Generator bfg2-beta

ESMF Earth System Modeling Framework ESMF_4_0_0rp2

FMS Flexible Modeling System Riga (internal)

MCT Model Coupling Toolkit 2.6.0

OASIS/PSMILe Ocean Atmosphere Sea Ice Soil /
PRISM System Model Interface
Library

 OASIS4

TDT Typed Data Transfer 12 June 2008

Table 1 - Analyzed Coupling Technologies

The feature analysis we conducted is based on information found in technical documentation
that accompanies the coupling technologies (e.g., programming guides, user manuals) as well
as articles that describe the technologies and their uses. The initial feature analysis was
conducted in a bottom-up fashion by gathering a large list of features that couplers support.
The resulting feature diagram contained over one hundred features at the leaf level. We dealt
with this complexity by abstracting related sub-features into common higher-level features,
sometimes producing a hierarchy several levels deep. To deal with uncertainty in the way
certain features are represented, we created an issues list describing alternative feature

	

representations. In working through the issues list, the feature model has undergone several
refactorings. During the feature modeling process, we have defined a vocabulary that
describes the space of features supported by couplers for ESMs. When alternative terms were
found in the literature, we either chose one of the terms or selected a different term which we
felt encompassed the semantics of the set of alternatives. In an attempt to appeal to a broad
audience of researchers and scientific modelers interested in coupling technologies, we have
tried to avoid jargon terms that are only well-known within highly specialized communities.

The full feature model is available in a technical report.

References
[1] Metafor Home Page. Available: http://metaforclimate.eu/

[2] C. W. Armstrong, R. W. Ford, and G. D. Riley, "Coupling integrated Earth System Model
components with BFG2," Concurrency and Computation: Practice and Experience, vol. 21,
pp. 767-791, 2009.
[3] V. Balaji, "The FMS Manual: A developer's guide to the GFDL Flexible Modeling
System," December 17, 2002 2002.
[4] V. Balaji, B. Boville, S. Cheung, N. Collins, T. Craig, C. Cruz, A. d. Silva, C. DeLuca, R.
d. Fainchtein, B. Eaton, B. Hallberg, T. Henderson, C. Hill, M. Iredell, R. Jacob, P. Jones, E.
Kluzek, B. Kauffman, J. Larson, P. Li, F. Liu, J. Michalakes, S. Murphy, D. Neckels, R. O.
Kuinghttons, B. Oehmke, C. Panaccione, J. Rosinski, W. Sawyer, E. Schwab, S. Smithline,
W. Spector, D. Stark, M. Suarez, S. Swift, G. Theurich, A. Trayanov, S. Vasquez, J. Wolfe,
W. Yang, M. Young, and L. Zaslavsky, "ESMF User Guide Version 3.1," 2009.
[5] K. Czarnecki and U. W. Eisenecker, Generative Programming: Methods, Tools, and
Applications: Addison-Wesley, 2000.
[6] R. Dunlap, L. Mark, S. Rugaber, V. Balaji, J. Chastang, L. Cinquini, C. DeLuca, D.
Middleton, and S. Murphy, "Earth System Curator: Metadata Infrastructure for Climate
Modeling," Earth Science Informatics, vol. 1, pp. 131-149, 2008.

[7] R. Dunlap, S. Rugaber, and L. Mark, "A Feature Model of Coupling Technologies for
Earth System Models," Georgia Institute of Technology GT-10-18, October 5 2010.

[8] J. Larson, R. Jacob, and E. Ong, "The Model Coupling Toolkit: A New Fortran90 Toolkit
for Building Multiphysics Parallel Coupled Models," International Journal for High
Performance Computing Applications, vol. 19, pp. 277-292, 2005.
[9] C. Linstead, "Typed Data Transfer (TDT) User's Guide," Potsdam Institute for Climate
Impact Research, Potsdam2004.
[10] R. Redler, S. Valcke, and H. Ritzdorf, "OASIS4--A Coupling Software for Next
Generation Earth System Modelling," Geoscientific Model Development, vol. 3, pp. 87-104,
2010.

[11] M. Simos, D. Creps, C. Klinger, L. Levine, and D. Allenmang, "Organization Domain
Model (ODM) Guidebook, Version 2.0," 1996.

	

Data assimilation and coupling
by Andrea Piacentini (CERFACS)
From the point of view of modellers, the aim of Data Assimilation techniques is to
incorporate information drawn from observations into a time evolving model, in order to
enhance its accuracy. Typical application examples are the determination of the optimal initial
condition and of a set of parameters for a forecast model or the integration of large quantities
of validated observational data in long term reanalyses.

 There is a full collection of data assimilation methods and techniques, but they all share some
basic components, such as a model, its linear tangent and adjoint (if available), an observation
operator, its linear tangent and adjoint, and so on. This allows for the implementation of
modular data assimilation suites, provided that the interfaces between components are
coherently defined.
The computational burden due to the assimilation process is usually higher or even much
higher than the cost of the direct modelling itself. The best performances are clearly obtained
when the data assimilation operators are integrated since the beginning in the model design.
On the contrary, implementing a data assimilation procedure inside an existing model can
easily turn out to be a cumbersome task and the resulting suite usually lacks of flexibility.

In this situation it is recommended to implement the data assimilation suite as a coupled
application where all the components keep a certain amount of independence and the
assimilation algorithms is described by their order of execution and by the way they exchange
data. With respect to a canonical climatic coupling, the coupled data assimilation suite
application has to account for the repeated or conditional execution of the components and
therefore for complex communication patterns. We define the former canonical coupling as
static and the latter kind of coupling as dynamic. The PALM dynamic coupler, developed at
CERFACS, grants the needed amount of flexibility.

Examples of data assimilation suites implemented as couplings exist in the domains of
atmospheric chemistry, oceanography and flood forecasting and the same approach could be
easily extended to data assimilation in coupled models.

	

	

Webbased Experiments With Earth System Models of Dierent Complexity Used for
Education at Freie Universitat

by Ingo Kirchner and Ulrich Cubasch, Institut of Meteorology, Freie Universitat Berlin

1. Introduction

The WEKUW system (Webbased experiments with climate and weather models) gives the
students the opportunity to work with typical earth system models without too much technical
background. Normally an earth system scientist performs simulations with complex models
on super computers. In relation to the modeling, the earth system scientist switches between
three different activities (see Fig.1). As analyst he analyzes various model experiments. As
modeler he is setting up the model and performing the experiments, as developer he programs
and changes the model.

Figure 1: The various tasks of an earth system scientist to perform an experiment

For these tasks he needs in addition to the earth science background good skills in
computational sciences and technical programming. These skills are missing by most of the
meteorology students. The WEKUW system hides most of the technical tasks from the user.
The system builds an application layer between the models and the user interface.

2. Climate Modeling with WEKUW

The concept of the WEKUW system has the main focus on typical scientific questions. The
user performs the simulations and learns the basic knowledge for the application of the
models by doing the experiments. The minimum technical requirements are an internet
connection and a web browser on the user side. The server connects to all different models in
an unique way and do the simulation uncoupled from the user login.

	

Figure 2: Components of the WEKUW system

The WEKUW system can be divided into the following components (see Fig.2):
• The WEKUW server provides the basic functions for the uniform operation with the

models. This includes the online help, starting the experiments, the data evaluation and
the management of the user accounts.

• The WEKUW models are a compilation of the individual models for different
applications. For every model exists a catalog of scientific questions, a package for the
local installation of the models and a chapter in the content area of the server.

• The WEKUW training course follows the personal learning path, or is embedded in
the curriculum. Normally a selection is made by the tutor based on the pool of the
models with their question catalogs. A training course for example is managed on the
platform of the FUB (http://wekuw.met.fuberlin.de/WEKUW/current/). Another
typical application scenario of the WEKUW system is the goal-oriented involvement
of experiment selection and is used for demonstration of practical activities.

	

The user side of the server supports two roles, the tutor and the student. The tutor can control
the educational process of each student individually. He will switch the models on or off,
unlock the experiments for the student and he can comment the experiment results of each
student in the web-environment. The student has access to the documentation of each model
and each experiment. He can start the experiments which are unlocked for him. For each
experiment type the user can store notes inside the web-environment and the tutor can
comment these individually via the web interface.

3. Example Workow with WEKUW
The web interface allows to modify the model control parameters, to start the models, to
control the experiments and to analyse the results of each simulation (see Fig.3).

Figure 3: The basic workow in the user mode of the WEKUW system

For each model a series of different experiments is available. This list is continuously
expanded and includes currently:

• EBM an energy balance model, see e.g. McGue/Henderson-Sellers (1997)
• PUMA the Portable University Model of the Atmosphere of the University of

Hamburg, see Fraedrich et al. (2001)
• ECHAM4 the 4th generation of the atmospheric global circulation model of MPIM

Hamburg, see Roeckner et al. (1996)
• PLASIM the planet simulator of the University of Hamburg, see Lunkeit et al. (2004

and 2005)
• RCG the regional chemical transport mode of the TrUmF group (tropospheric

environmental sciences) of the Institute of Meteorology at FUB, see Stern (2003 and
2004)

	

Here a short session scenario will be described to demonstrate a typical experiment workflow.
After individual registration, the tutor will unlock a specific scientific question, e.g. task D/03
in the ECHAM4 section “What is the effect of the parameterization of radiation, friction, and
clouds?". Now the student will login with his own account and will go to the selected task. On
the introduction page of the experiment the student will see additional references and a short
explanation of the scientific background. Here he can fill in a note, e.g. writing down the
individual experiment plan. By using the “execute experiment" button, the user opens the
conguration page. In our example the user will make two experiments, for the first one only
the experiment name will be changed to “control" and the experiment will be submitted. For
the second experiment the name is changed to “noclouds", the cloud parameterization is
switched off, the experiment is submitted and the student can logout. The simulations will be
executed in the background. After few hours the student will analyse the experiments. He will
login again, chooses the “analysis" button from the main WEKUW menu and opens the
experiment result pages of both experiments. Now he can compare the preprocessed figures,
download and analyses the raw data or can read more details about the runscript and the
model, e.g. browsing in the source code of the model.
4. Summary and Outlook

The WEKUW system is used since 2003 for the training of meteorology students. In the
training course the students start with an energy balance model (EBM), continue with
experiments of a simple general circulation model (PUMA), with an aerosol chemistry
transport model (RCG), with a complex global atmosphere model (ECHAM4) or with a
simple earth system model (PlaSim). There is no limitation for an extention of the system
with new models, as each new model can be implemented in a modular way.

5. References
Fraedrich, K., D.Kirk und F.Lunkeit (2001): Portable university model of the atmosphere.
Veröffentlichungen des Meteorologischen Instituts der Universität Hamburg, 37 pages.
 Lunkeit, F., et al. (2004): Planet simulator - Reference manual. 102 pages. Lunkeit, F., et al.
(2005): Planet simulator - User's guide. 82 pages.
McGue, K., and A. Henderson-Sellers (1997): A climate modelling primer,John Wiley &
Sons, Serie: Research and Development in Climate and Climatology, 253 pages.
Roeckner, E., et al. (1996): The atmospheric general circulation model ECHAM-4: Model
description and simulation of present-day climate. Max-Planck Report No.218.
Stern, R. (2003): Entwicklung und Anwendung des chemischen Transportmodells REM-
CALGRID. Abschlussbericht zum FuE-Vorhaben 298 41 252 des Umweltbundesamts
Modellierung und Prüfung von Strategien zur Verminderung der Belastung durch Ozon.

Stern, R. (2004): Weitere Entwicklung und Anwendung des chemischen Transportmodells
REM-CALGRID für die bundeseinheitliche Umsetzung der EU-Rahmenrichtlinie Luftqualität
und ihrer Tochterrichtlinien. Abschlussbericht zum FuE-Vorhaben 201 43 250 des
Umweltbundesamts Änwendung modellgestützter Beurteilungssyteme für die
bundeseinheitliche Umsetzung der EU-Rahmenrichtlinie Luftqualität und ihrer
Tochterrichtlinien.

WEKUW (2002): http://wekuw.met.fu-berlin.de/WEKUW/current the webpage of the
WEKUW installation at the Freie Universität Berlin.

	

Metadata and coupling
by Rupert Ford (Manchester University)
	

This talk concentrates on two potential uses of Metadata for Coupling. The first is to
configure a set of model components into a particular coupled model run. The second is to
capture the provenance of a particular coupled model run.
For coupled model configuration we compare and contrast three coupling systems, the two
most widely used ESM coupling systems (ESMF and OASIS) and BFG, which is fully
metadata driven.

For coupled model provenance we introduce and propose the Common Information Model
(CIM) that is being developed by the METAFOR project.

Finally we present a vision of using the CIM (or some future derivative) as the "lingua franca"
for both provenance and configuration Metadata.

	

	

Leveraging the New CESM1 CPL7 Architecture - Current and Future Challenges
by Mariana Vertenstein (NCAR)
	

New CESM science will build on the scalability, flexibility and extensibility of the new CPL7
architecture. Key examples of this will be outlined in this talk. CESM1 is now targeting
unprecedented global resolutions for all components. The CESM1 coupling infrastructure has
been extended in order to provide data assimilation capability in order to obtain better ocean
initial conditions for the upcoming decadal prediction runs that are part of the CMIP5
experimental protocol suite. A new land ice sheet component has been added that will provide
the capability of better predictions of sea-level rise. The CPL7 paradigm has also been
leveraged to create a new “ocean” component that permits the nesting of a regional model,
ROMS, in the global ocean component, POP. The flexible inclusion of a new isotope
capability will help provide new insights in the global hydrological cycle and of ocean model
circulation. Finally, the incorporation of super-parameterization in CAM, and the
accompanying changes to pass new surface fields to CAM, will result in better simulations of
clouds, one of the largest sources of uncertainly in climate models. These topics are
summarized in more detail below.
Ultra High Resolution: Scalability out to tens of thousands of processors has already been
demonstrated with the addition of the HOMME dynamical core in CCSM4 (CAM4). An
outstanding goal is to approach a global horizontal scale of 10km across CESM components.
Critical to the ability to achieve this scaling has been the introduction of memory and
performance scalability that could not have been obtained without the use of a new and
efficient parallel I/O library, PIO, that was designed and implemented by CESM collaborators
at NCAR, ANL, ORNL and LLNL. Previous to PIO, external storage accesses was limited to
a single master process, thereby creating a serial bottleneck, degrading parallel performance
scalability of the application as a whole, and exhausting local memory at ultra high model
resolutions. A parallel solution was therefore needed that had more generality than having all
processes access the external storage, especially to access to the same file. The latter case can
lead to failure or very poor performance when thousands or hundreds of thousands of
processes are involved.

PIO was initially designed to allow better memory management for very high-resolution
simulations by relaxing the requirement for retaining the memory corresponding to the global
2-d horizontal resolution on the master I/O task. Since then, PIO has developed into a general
purpose parallel I/O library that serves as a software interface layer designed to encapsulate
the complexities of parallel I/O and to make it easier to replace the lower level software
backend. PIO has been implemented throughout the entire CESM system and currently
supports serial I/O using netCDF and parallel I/O using pnetCDF. PIO calls are collective. An
MPI communicator is set in a call to the PIO initialization routine and all tasks associated
with that communicator must participate in all subsequent calls to PIO.
One of the key features of PIO is that it takes the model’s decomposition and redistributes it
via a generic framework-independent rearranger to an I/O “friendly” decomposition on the
requested number of I/O tasks. It is important to note that there is no imprinting of the model
decomposition in the resulting I/O file. In using the PIO library, the user must specify the
number of I/O tasks to be used, the stride or number of tasks between I/O tasks and the
backend type (e.g. pnetCDF). By increasing the number of I/O tasks, the user can easily
reduce the serial I/O memory bottleneck even with the use of serial netCDF.

	

Extending the coupler infrastructure - data assimilation: Short-term decadal prediction
runs are part of the CMIP5 protocol suite and will be much more sensitive to ocean initial
conditions. New ocean data assimilation has been incorporated into the model system by
extending the coupling architecture in order to permit the instantiation of more than one
instance of a model component within the single model executable. This new capability is
utilized to perform ocean data assimilation using Kalman Ensemble filtering via the Data
Assimilation Research Testbed (DART). To perform ocean data assimilation, DART is
combined with the Community Atmosphere Model (CAM) and the Parallel Ocean Program
(POP) to create loosely coupled ensemble analyses of the ocean that are consistent with the
analyses of the atmosphere. Ocean data assimilation has been carried out using 48 members of
POP initially drawn from model climatology and 48 members of a data atmosphere that
comes from an independent CAM ensemble member analysis (also using DART) where
observed ocean temperature and salinity is assimilated every midnight. The large ensemble
and diverse atmospheric forcing lead to improvements in the ensemble mean ocean analysis.

Introduction of new model component – land ice sheet: The ice sheets of Greenland and
Antarctica are strongly coupled to the ocean, land and atmosphere, and are expected to play a
pivotal role in the global sea-level rise in the 21st century. Consequently improved sea-level
predictions are needed for mitigation and adaptation strategies. A new dynamic ice sheet
component has been added to the CESM1 system that will enhance the ability to predict
changes in ice sheets and sea level rise on the decade to century time scales. CESM 1.0 now
includes Glimmer-CISM (v1.6), the Community Ice Sheet Model and is the first publicly
released IPCC-class model to include a dynamic ice sheet model. The current ice-sheet
component, is serial and does not include the higher-order dynamics required for modeling
fast-flowing ice streams and outlet glaciers. However, it does include a new surface-mass-
balance scheme in the land component that passes numerous new fields through the coupler.

Currently, only one-way coupling between the land surface and ice sheets is utilized. The
surface mass balance of ice sheets is computed in CLM and downscaled to Glimmer-CISM
within the ice-sheet model. The ice sheet then evolves in time, but the topography and
surface types in CLM are held fixed. Furthermore, ice-sheet/ocean coupling is also not
supported and is needed to simulate interactions between oceans and floating ice shelves. A
near term goal is the addition of a parallel, fully coupled ice sheet model with advanced
dynamics that will send data such as ice area and elevation to other CESM components and
receive boundary conditions such as ice accumulation and melting rates from land and ocean
models.

Introduction of embedded regional models – NRCM: CESM1, along with many current
global climate models shows significant biases in properties such as sea surface temperature
in upwelling regions. Increasing the atmospheric resolution helps, but is not sufficient. One
approach that is being taken in CESM1 to mitigate these biases is to embed a high-resolution
limited domain model, the Regional Ocean Model System (ROMS), within POP, in each of
the upwelling regions. The hope is that embedding regional 1/10° ROMS models in a global
system containing a 1° ocean (POP) will permit the resolution of regional scale processes as
well as their influence on the large-scale climate, thus leading to improved simulations in
these regions.

The approach taken for NRCM is to create a new “hybrid” OCN component that in effect
serves as a driver and coupler for a POP-ROMS system. The OCN component couples to the
CPL7 driver as if it was a standard CESM1 component. However, the sea-surface
temperatures (SSTs) passed back to the driver correspond to merged POP/ROMS SSTs. The

	

POP model still receives atmosphere/ocean fluxes that are computed in the coupler code.
However, ROMS computes its own atmosphere/ocean fluxes thereby requiring a new time
series of atmosphere forcing fields on the atmosphere grid to be passed to the OCN
component.

Introduction of flexibly specified new fields – addition of isotopes: CESM is targeting the
addition of isotope tracers in order to better understand the flow of water, carbon and nitrogen
in the model system. From a scientific perspective, water isotopes are used to provide new
insights into the global hydrological cycle and cloud processes. The addition of these isotopes
to CESM would also enable for the first time a direct comparison of model output to
paleoclimate archives. Similarly, the addition of carbon isotopes to CESM will lead to new
understanding of ocean model circulation and deep-water mass formation processes. The goal
is to extend the current coupling scheme to allow for the run time specification of isotopes
and have the coupler automatically pass the tracers between components.

Introduction of new physics – addition of super-parameterization in CAM: The modeling
of clouds is one of the major sources of uncertainty in global climate models. One approach to
removing this uncertainty is to migrate to global cloud resolving models. However, this
currently results in a prohibitive computational cost. An intermediate approach, that is
believed to provide more accurate simulations of cloud fields, is to replace only the
parameterized moist physics in each model grid column with a “small” cloud resolving
model. This approach is referred to as super-parameterization. From a coupling perspective,
the introduction of super-parameterization in CESM/CAM will require new flux information
from the surface components. In particular, in addition to state and flux fields, the
introduction of super-parameterization will also require the sending of higher-order moments
of these fields that describe spatial variability information for these fields.

Finally, new CESM science will also require addressing new computational challenges such
as the incorporation of new parallel workflow and post-processing functionality and
determining ways to leverage GPU functionality to benefit model performance.

	

	

	
Coupled models at the Max-Planck-Institute for Meteorology

by René Redler (MPI Meteorology)

We start with a description of the current production version of the Earth System Model
(ESM) developed and used by the Max Planck Institute for Meteorology (MPI-M) , now
named MPI-ESM Version 1, with special emphasis on the coupling of the atmosphere and
ocean model via the OASIS coupler. The short technical description of MPI-ESM1 serves as
the basis for an introduction to MPI-ESM2, the new coupled model under development at
MPI-M.

The MPI Earth System Model Version 1

MPI-ESM1 is designed to simulate the full Earth System over periods of hundreds to a few
thousand years. The Earth system model is the major tool for experiments addressing
questions for example on the internal variability of the system or its susceptibility to natural or
anthropogenic perturbations, including major volcanic eruptions, variations in the solar
irradiation or anthropogenic greenhouse gas emissions. The MPI-ESM1 consists of four main
components: the atmospheric ECHAM6 model, the land model JSBACH, the ocean model
MPIOM and the ocean-biogeochemistry-model HAMOCC. A sea-ice model, the fifth major
component in our system, is included in MPIOM. The MPIOM and HAMOCC on the one
hand and the ECHAM6 and JSBACH models on the other hand are coupled directly, while
the air-sea-exchange in the coupled MPI-ESM1 is taking place via OASIS3. Technically, this
is solved by a coupling between MPIOM and ECHAM6. The atmosphere part collects
contributions from land (e.g. river runoff) while the ocean collects data from the ice and the
ocean-biogeochemistry model. While for the internal coupling data are exchanged at every
time step, for the external coupling the interval for data exchange between the ocean and the
atmosphere is set to one day. Coupling fields are accumulated at each time step within the
sending model components locally on each process. Data are averaged before sending them to
the OASIS3 coupler.

The boundary values that are exchanged between the atmosphere and the ocean are :
Ocean/Sea-Ice/Ocean-Biogeochemistry to Atmosphere/Land

• sea surface temperature
• sea ice concentration
• sea ice thickness
• ocean horizontal surface velocity
• CO2 flux

Atmosphere/Land to Ocean/Sea-Ice/Ocean-Biogeochemistry
• solar and non-solar heat fluxes
• precipitation, evaporation, river runoff
• snow fall
• horizontal wind stress
• CO2 concentration

As an alternative to the fully coupled model configuration the software environment allows to
run subsets of the model system (see Table 2).

	

ECHAM6 – JSBACH – MPIOM – HAMOCC coupled with OASIS3

ECHAM6 – JSBACH – MPIOM coupled with OASIS3

ECHAM6 – JSBACH

MPIOM – HAMOCC

MPIOM

JSBACH

Table 2: Possible model configurations of MPI-ESM version 1

In terms of horizontal and vertical resolution, the coupled MPI-ESM1 and it subcomponents
can be assembled in several different model configurations:

Horizontal and vertical resolution # of horizontal grid points

Atmosphere Ocean Atmosphere Ocean

T31L19 GR30L40 96 x 48 121 x 101

T63L47 GR15L40 192 x 96 256 x 220

T127L95 TP04L40 384 x 192 802 x 404

T255L199 TPM6L80 768 x 384 3586 x 1800

Table 3: Possible coupled model configurations of MPI-ESM1

In production mode the T127L95 ECHAM6/JSBACH is typically run with up to 32 x 24 MPI
processes and two OpenMP threads. MPIOM/HAMOCC (TP04L40) typically uses 16 x 8
MPI processes. For our setup we use the parallel version of OASIS3 as it is provided by
CERFACS with up to 21 OASIS3 processes, one for each coupling field. Even though we
collect the data on the component root processes prior to the exchange with OASIS3 and
redistribute them after having them received, the cost for coupling is reasonably low (less than
2% of the total time) even at this quite high resolution. Efficient gather and scatter routines as
well as the local accumulation of coupling fields all done inside our model components
contribute to these low costs.

Currently we investigate to replace OASIS3 with OASIS4, especially for targeting the high-
resolution configuration T255L199-TPM6L80. While it is quite straightforward to replace the
OASIS3 interface with an OASIS4 interface in both our model components, we notice
problems with the coupling of the MPIOM grid in the Arctic region. While the neighbourhood
search in OASIS4 is quite efficient, it fails to generate proper interpolation stencils for target
cells that intersect with the edge of the northern compute domain because no information is

	

provided about the connectivity of points. With OASIS3 this problem is still overcome by
using the conservative remapping where the less efficient search provides correct results.
While OASIS3 would only fail to provide correct results for a bilinear or bicubic
interpolation, with OASIS4 even the conservative remapping would fail under certain
conditions. This problem can either be solved by providing appropriate information about the
connectivity rather than relying on the implicit data structure, or by extending the OASIS4
functionality in such a way that it identifies missing cells and points in these critical regions
by evaluating the geographical information provided by the user API.

The MPI Earth System Model Version 2

ICOsahedral Non-hydrostatic General Circulation Models (ICON) is a joint project of MPI-M
and the German Weather Forecast Service (DWD), with the goal to develop a new generation
of general circulation models for the atmosphere and the ocean in a unified framework. These
models use unstructured grids derived from an icosahedral base grid. Parametrizations are
inherited from MPI-ESM1 and so will be the component models HAMOCC and JSBACH;
the coupling fields exchanged between ocean and atmosphere are similar to MPI-ESM1 as
well.
The first version of the coupled model will employ identical horizontal grids in atmosphere
and ocean. While for each wet ocean point there is a corresponding grid point at the same
geographical position in the atmosphere, grid points are partitioned in a different way in both
media. A search is required to locate the process on which the remote grid point is located; in
this simple case we do not require any interpolation. For this first simple coupling we have
developed a customized light-weighted coupler which exploits the known grid hierarchy and
geometry, and thus allows for an efficient search (and interpolation) on ICON grids. In our
preliminary configuration grid points on identical geographical positions will have identical
grid point indices which allows us to reduce the search to a 1d search along one integer array.

The current plan is to extend this coupling software with growing needs of an advanced
version of the MPI-ESM2 and use this as a simple test-bed to implement the functionality
required like particular interpolation schemes or modifications of the user API. As the
icosahedral grid has a hierarchical structure we plan to use this hierarchy for an efficient
search strategy similar to the multi-level approach taken in OASIS4 for block-structured
grids. In a third step we plan to integrate our software development into OASIS4 and provide
an OASIS4 interface for the individual components to allow for a coupling of any of the
individual MPI-ESM2 components to external models working on block-structured grids like
MPIOM, ECHAM and others.

	

	
Infrastructure requirements in support of Met Office models
by Steve Mullerworth (MetOffice)

The Met Office is developing its next generation of global coupled models, earth system
models and forecast production models around the use of the OASIS coupler. In common
with other models, higher resolution versions of these models urgently need more scalability
in both the model formulation and the coupling framework.

The coupled configuration currently under development comprises the Met Office Unified
Model (UM) atmosphere, the NEMO ocean model and the CICE sea ice model and is called
HadGEM3-AO. While the development of the climate configuration (N96, which is roughly
1.5 degree atmosphere and 1 degree ocean) is still continuing, HadGEM3-AO is already being
used to provide seasonal forecasts in production (GLOSEA4), with plans to migrate to a
higher resolution version of this model (N216 and 0.25 degree ocean).The OASIS3 coupler is
currently used for all resolutions of the model. The N216 resolution version uses 8 instances
of OASIS3 to manage the coupling of approximately 20 fields each-way. Plans are underway
to migrate HadGEM3 to the parallel OASIS4.

In the future, the HadGEM3 configuration is likely to form the basis of a range of models,
from low resolution fast Earth System Models,through providing the mid-resolution scenario
runs for the IPCC process, to providing a myriad of climate and forecasting services in a tight
operational schedule.

The UM atmosphere currently benefits from a highly flexible and configurable post-
processing system that allows users to select individual diagnostics, to select in-line time and
domain processing individually for each chosen diagnostic, and to allow output of results to a
choice of files. Asynchronous IO is currently being implemented to manage the output of
these multiple files.
We foresee addition of multiple other components into the current model system, such as
wave models, chemistry models and new land surface schemes, each of which have differing
demands on the coupler and model infrastructure. Flexibility in choices of how to couple and
deploy components developed both at the Met Office and by our collaborators and external
groups is likely to be an important requirement.

	

Addressing the Challenge of Exaflopic Computation
by Jean-Yves Berthou, EDF R&D - European Exascale Software Initiative Coordinator, and
Jean-Claude André, Vice-Chair of the EESI Working Group on industrial and engineering
applications

Abstract
Exaflopic systems, composed of millions of heterogeneous cores will appear at the end of this
decade. This technological breakthrough will engage the HPC community in defining new
generations of applications and simulation platforms. The challenge is particularly severe for
multi-physics, multi-scale simulation platforms that will have to combine massively parallel
software components developed independently from each others. Another difficult issue is to
deal with legacy codes, which are constantly evolving and have to stay in the forefront of their
disciplines. This will also require new compilers, libraries, middleware, programming
environments (including debuggers and performance optimizers), languages, as well as
numerical methods, code architectures, and pre- and post-processing tools (e.g., for mesh
generation or visualization).
The goal of the European Exascale Software Initiative project (EESI) is to build a European
roadmap along with a set of recommendations to address the challenge of performing
scientific computing on this new generation of computers. This paper presents the objective
and first results of EESI as well as the international context on which this effort is conducted.
Introduction	

Exaflopic computer (10^18 floating point operations per second) composed of millions of
heterogeneous cores are expected at the end of this decade. These incredible capabilities lead
to outstanding technological breakthrough possibilities opening unknown areas in designing
new products or optimizing existing ones in almost all society domains [5,6,7,8,11,12,15,18].

These massively parallel systems will engage the HPC community for the next 20 years in
defining new generations of applications and simulation platforms. The challenge is
particularly severe for multi-physics, multi-scale simulation platforms that will have to
combine massively parallel software components developed independently from each others.
Another difficult issue is to deal with legacy codes, which are constantly evolving and have to
stay in the forefront of their disciplines. This will require new numerical methods, code
architectures, mesh generation tool, visualization tool. In addition to the applications, all the
software layers between the applications and the hardware need to be revisited. Many
challenges are to be addressed: scalability, fault tolerance, programming models, to cite a few.
As examples of scalability challenges, currently, none of the runtime environment allows
executing an application on one million of nodes and there is no known solution to launch one
million of processes on large scale machines in less than 5 minutes. Fault tolerance is another
very important challenge to solve before being able to run applications on one million of
nodes for hours. Several recent keynote addresses in top level conferences [11][12] have
raised two significant issues: 1) the MTBF of very large computers is diminishing rapidly and
will reach soon the time required for fault tolerance systems to only restart the application, 2)
the exponential increase of the number of transistors and their exponential reduction in size
with time, will increase significantly the number of “masked errors” that could be not detected
by any system (silent soft errors). A third challenge is on the programming approaches for
Peta-Exascale computer. Programming environments should deal with hierarchy,
heterogeneity, flexibility and help the programmer for making his program scalable.

	

Performance, computational precisions, energy saving, etc. are also challenges to be
addressed [3,4,13,14,16,20,21,22].
The International Exascale Software Project (IESP)

Community of researchers in HPC software is convinced that there is no way for a single
continent alone (America, Europe or Asia) to design and develop all the software needed for
these computers. In USA, the Department Of Energy (Office of Science) has launched at the
end of 2008 the International Exascale Software Project (IESP)[10,24] and has invited the
international community, mainly US, Europe and Japan, to work together for providing the
necessary tools, software and methods for new generation of HPC applications. This
initiative, led by Jack Dongarra and Pete Beckman, claims that “…although the investments
in these separate software elements have been tremendously valuable, a great deal of
productivity has also been lost because of the lack of planning, coordination, and key
integration of technologies necessary to make them work together smoothly and efficiently,
both within individual PetaScale systems and between different systems…. It seems clear that
this completely uncoordinated development model will not provide the software needed to
support the unprecedented parallelism required for peta/Exascale computation on millions of
cores, or the flexibility required to exploit new hardware models and features, such as
transactional memory, speculative execution, and GPUs. We believe the community must
work together to prepare for the challenges of Exascale computing, ultimately combing their
efforts in a coordinated International Exascale Software Project”.
EESI, building a European vision and roadmap

Even if the European participation to IESP is significant, many experts and stakeholders in
Europe are not involved in this roadmapping activity. Moreover, we are convinced that an
Exaflopic roadmap should be conducted also at the European level, including the
technological dimension as well as the applicative one. This lead us to propose to the
European Commission to fund the European Exascale Software Initiative, EESI [25]. EESI
was launched the June 1, 2010 for a 18 months duration.

The EESI goal is to build a European vision and roadmap to address the challenge of
performing scientific computing on multi Petaflop performances in the next few years and
Exaflop performances in 2020. EESI is investigating where Europe stands in the overall
international HPC landscape, what are its strengths and weaknesses, what are the priority
actions, and what cooperation modes should be implemented between Europe and the
international community. EESI is also identifying the sources of competitiveness for Europe
induced by the use of Peta/Exascale software. It is investigating and will propose programs in
education and training for the next generation of computational scientists.

A first mapping of the major HPC projects and organizations has been achieved. This
mapping has been extended world-wide using IESP inputs and international contacts. It is
available on the EESI web site [1].
The EESI work plan is progressing in two directions. A first set of four working groups is
targeting the technological computing domain challenges: hardware and associated software,
computer science, numerical analysis and applicative software (ie. scientific and engineering
codes). Each working group will produce its own roadmap by June 2011. A second set of
working groups will target the applicative side by looking for major grand challenges in
Climate and Weather forecasting, Industrial application (focus on Transportation and Energy),
Physics and Engineering sciences and Life science-Health-BPM. Each of these four working
groups will also produce its own roadmap integrating technological inputs identified by the
first four working groups. The economic dimension and impact on European competitiveness

	

of these challenges will be particularly under study. To ensure close collaboration and
sharing, one internal workshop will be held in February 2011 where each working group will
be invited to present its first results and roadmaps.

An overall synthesis will be produced and be presented at a large final public conference in
Barcelona in October 2011.

Bibliography
[1] EESI Web site, www.eesi-
project.eu/media/download_gallery/EESI_Investigation_on_Existing_HPC__Initiatives_EPS
RC_D2%201_FF.pdf

[3] "Simulation-Based Engineering Science - Revolutionizing Engineering Science through
Simulation" , mai 2006, www.nsf.gov/pubs/reports/sbes_final_report.pdf

[4] ORNL/TM-2007/44, National Centre for Computational Sciences, Oak Ridge National
Laboratory, « COMPUTATIONAL SCIENCE REQUIREMENTS FOR LEADERSHIP
COMPUTING »,July 2007, Douglas Kothe-Ricky Kendall
[5] ORNL/TM-2007/238, National Centre for Computational Sciences, Oak Ridge National
Laboratory, « Scientific Application Requirements for Leadership Computing at the Exascale
», December 2007, Computing Requirements Team

[6] ORNL/TM-2007/232, National Centre for Computational Sciences, Oak Ridge National
Laboratory, « Science Prospects and Benefits with Exascale Computing » December 2007,
Douglas B. Kothe
[7] "Enquête sur les frontières de la simulation numérique », mai 2005, www.academie-
technologies.fr/V2/ecrit05/Simulation/rapport090505_2.pdf
[8] "Getting ready for petaflop capacities and beyond: a utility perspective", 2008 J. Phys.:
Conf. Ser. 125 012001, July 2008, Jean-François Hamelin and Jean-Yves Berthou
[10] http://www.exascale.org/iesp/Main_Page

[11] “Reflections on Failure in Post-Terascale Parallel Computing”, ICPP 2007, Keynote,
Garth Gibson

[12] “Fault Tolerance for PetaScale Systems: Current Knowledge, Challenges and
Opportunities”, Europar 2008, Keynote, Franck Cappello

[13] ExaScale Computing Software Study: Software Challenges in Extreme Scale Systems, a
DARPA/IPTO Report (September 14, 2009),
http://users.ece.gatech.edu/%7Emrichard/ExascaleComputingStudyReports/ECSS%20report
%20101909.pdf

[14] International Assessment ofesearch in Simulation-Based Engineering and Science, a
World Technology Evaluation Centre (WTEC) panel report, sponsored by the NSF and other
US Govt. Agencies, chapter 5 (Next Generation Architectures and Algorithms by George Em
Karniadakis) and chapter 6 (Software Development by Martin Head-Gordon),
http://www.exascale.org/mediawiki/images/2/20/SBES-InitialFullDraftReport-
30April2009_BW.pdf

[15] Modeling and Simulation at the Exascale for Energy and the Environment: Report on the
Advanced Scientific Computing Research Town Hall Meetings on Simulation and Modeling
at the Exascale for Energy, Ecological Sustainability and Global Security (E3) (2008), Horst
Simon(LBNL), Thomas Zacharia (ORNL), Rick Stevens (ANL). Sponsored by the DOE Office
of Science, http://www.sc.doe.gov/ascr/ProgramDocuments/Docs/TownHall.pdf

	

[16] ExaScale Computing Study: Technology Challenges in Achieving Exascale Systems,
(DARPA/IPTO, 2008),
http://users.ece.gatech.edu/%7Emrichard/ExascaleComputingStudyReports/exascale_final_re
port_100208.pdf
 [18] Parallel Computing Research at Illinois The vision and research agenda of the Universal
Parallel Computing Research Centre at the University of Illinois at Urbana-Champaign,
http://www.upcrc.illinois.edu/whitepaper.php

 [20] ICT Infrastructures for eScience, Communication from the Commission to the European
Parliament, The Council, the European Economic and Social Committee, and the Committee
of the Regions, http://www.exascale.org/mediawiki/images/4/4c/ICT-Infrastructures-
eScience.pdf

[21] High Performance Computing & Numerical Analysis Applications/Algorithms Roadmap
Version 1.0, A. Trefethen, N. Higham, I. Duff, P.V. Coveney - Engineering and Physical

[22] Fundamentals of Technology Roadmapping, Marie L. Garcia and Olin H. Bray, Sandia
National Laboratory

[24] The International Journal of High Performance Computing Applications Volume 23
Issue 4, October 2009 Special Issue dedicated to The International Exascale Software Project

[25] www.eesi-project.eu

	

	
Designing HPC Software for an Uncertain World of Hardware
by Wael Elwasif and David Bernholdt (Oak Ridge National Laboratory)

Historically, the one constant in HPC hardware architectures is change, but the pace of change
is, arguably, accelerating of late. During the transition from terascale to petascale, we've
rather suddenly seen power concerns come to dominate, forcing a transition to horizontal
scaling (increasing cores). The world-wide HPC community is now planning an ambitious
decade-long push to exascale with multiple (broad) paths forward, and significant technical
uncertainty as to which one(s) will ultimately succeed in reaching the stated performance
goals.

Creating software which is simultaneously stable and functional enough to serve the long-
term needs of its users, and flexible enough to respond to the changing hardware environment
without requiring undo effort will be one of the prominent challenges of the coming decade
(and beyond).

In this talk, we will examine some of the key trends in hardware architecture and other issues
facing software developers, and discuss techniques on the software side that can help
developers adapt to and benefit from the rapid advances in computing power expected over
the next decade.

	

List of participants

Balaji V. Princeton University
Berthou Jean-Yves EDF
Carter Mick Met Office
Caubel Arnaud IPSL
Coquart Laure CNRS-CERFACS
Coulaud Olivier INRIA
Craig Tony NCAR
Duchaine Florent IMFT - CERFACS
Duda Michael NCAR/MMM
Dunlap Rocky Georgia Tech
Elwasif Wael Oak Ridge National Laboratory
Esnard Aurelien INRIA HiePACS / Cerfacs
Fisher Mike ECMWF
Fladrich Uwe SMHI
Ford Rupert Manchester University
Foujols Marie-Alice IPSL
Gurol Selime CERFACS
Hanke Moritz DKRZ
Hill Richard Met Office
Hummel Stef Deltares
Jacob Robert Argonne National Laboratory
Kirchner Ingo Freie Universitat Berlin, Institute of Meteorology
Larson Jay Argonne National Laboratory
Liu Li Tsinghua University
Maisonnave Eric CERFACS
Mohammadi Bijan CERFACS
Moine Marie-Pierre CERFACS
Morel Thierry CERFACS
Mullerworth Steve Met Office
Oehmke Robert NOAA
O'Kuinghttons Ryan NOAA/CIRES
Osprey Annette NCAS-CMS, University of Reading
Piacentini Andrea CERFACS
Ralph Adam ICHEC
Ramos Buarque-Giordani Silvana Meteo-FRANCE
Redler Rene MPI Meteorology
Riley Graham University of Manchester
Riviere Olivier Meteo-FRANCE (CNMR/GMAP)
Senesi Stephane Meteo-FRANCE
Sevault Florence METEO-FRANCE
Urzay Javier CERFACS
Valcke Sophie CERFACS
Vertenstein Mariana National Center for Atmospheric Research
Vuchener Clement INRIA HiePACS
Wang Xiaoge Tsinghua University
Yang Guangwen Tsinghua University

