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On December 15th-17th 2010, CERFACS and the Georgia Institute of Technology organized a 
workshop on the theme of “Coupling Technologies for Earth System Modelling: Today and 
Tomorrow” at CERFACS in Toulouse, France. The first thrust of the workshop was to assess the state 
of the art in Earth System Modelling (ESM) coupling frameworks, including current assumptions 
about coupled geophysical models, the nature of the capabilities provided, and the range of software 
architectures currently employed.  A primary objective was to explore and more deeply understand the 
trade-offs involved in the range of approaches to coupling in use throughout the community. The 
second thrust was to discuss a vision for coupling in the year 2020.  This involved positing what new 
requirements will arise in the next ten years and how existing coupling frameworks must evolve to 
meet those needs.  

45 people from different countries attended the workshop: 20 from France, 12 from other EU 
countries, 11 from the US, and 2 from China. The workshop programme was established by a 
Programme Committee composed of V. Balaji (Princeton University), Cecelia DeLuca (NOAA), 
Rocky Dunlap (Georgia Tech), Rupert Ford (University of Manchester), Sophie Valcke (CERFACS) 
and Mariana Vertenstein (NCAR). The first day and a half of the workshop was devoted to detailed 
presentations of current coupling technologies from developers of ESMF, CESM, MCT, PALM, 
OASIS, FMS, BFG, OpenMI and OOPS.  The rest of the workshop included presentations on coupled 
modelling perspectives at different centres, coupling related issues (e.g., data assimilation, metadata, 
and education), software and hardware challenges for coupling technologies, and two round tables to 
allow in-depth, interactive discussions. 

The present proceedings include: 

• the detailed workshop programme (p.2), 

• a summary of the round table discussions that took place both during the workshop and in the 
following weeks via interactive wiki pages (pp.3-6), 

• a set of workshop conclusions (p.7), 

• an extended abstract for each of the presentations (pp.8-66), 

• the list of participants (p.67).  

All details about the workshop including presentation slides and interactive wiki pages are available 
on the workshop web site at the following web address: 

https://verc.enes.org/models/software-tools/oasis/general-information/events 



2 
 

Workshop programme 
 
December 15th: 
Introduction and welcome, by Bijan Mohammadi (CERFACS director) 
Current coupling technologies and developments I; chair: Sophie Valcke (CERFACS) 
• 09h15 – 10h00: The Earth System Modeling framework ESMF, by Ryan O'Kuinghttons (NOAA/CIRES) 
• 10h00 – 10h45: The Community Earth System Model CESM1, by Tony Craig (NCAR) ) 
• 11h15 – 12h00: The Model Coupling Toolkit by Robert Jacob (Argonne National Laboratory) 
• 12h00 – 12h45: The dynamic parallel PALM coupler by Andrea Piacentini (CERFACS)   

Current coupling technologies and developments II; chair: Bob Oehmke (NOAA) 
• 14h00 – 14h45: OASIS, a coupler for climate modelling, by Sophie Valcke (CERFACS)  
• 14h45 – 15h30: The GFDL Flexible Modeling System FMS, by Balaji (Princeton University) 
• 16h00 – 16h45 : The Bespoke Framework Generator BFG, by Rupert Ford (U. Manchester)  
• 16h45 – 17h30 : The OpenMI interface for flexible, dynamic coupling, by Stef Hummel (Deltares)  
• 17h30 – 18h15 : OOPS - An Object Oriented Framework for Coupling Data Assimilation Algorithms to 

Models, by Mike Fisher (ECMWF)  

December 16th: 
Current coupling technologies and developments III; chair: Mariana Vertenstein (NCAR) 
• 09h00 – 09h45 : C-Coupler: A coupler for Earth System Modeling, by Xiaoge Wang (Tsinghua University, 

Beijing, China)  
• 09h45 – 10h30 : The Model for Prediction Across Scales (MPAS),, by Michael Duda (NCAR/MMM)  
• 11h00 – 11h30 : Feature modeling of coupling technologies, by Rocky Dunlap, Spencer Rugaber, and Leo 

Mark (Georgia Tech)  

11h30 – 12h30: Round table 1 : How do the different coupling technologies fit the different 
application needs and constraints; chair: Mariana Vertenstein and Sophie ValckeCoupling at the 
boundaries ; chair: Rocky Dunlap (Georgia Tech) 
• 15h00 – 15h30 : Data assimilation and coupling, by Andrea Piacentini (CERFACS)  
• 16h00 – 16h30 : Web based experiments with Earth system models of different complexity used for 

education at Freie University Ingo Kirchner (FU Berlin)   
• 16h30 – 17h00 : Metadata and coupling, by Rupert Ford (Manchester University)  

December 17th: 

Coupled modeling perspectives at different centers ; chair: Rupert Ford (Manchester University) 
• 09h00 – 09h30 : Leveraging the New CESM1 CPL7 Architecture - Current and Future Challenges, by 

Mariana Vertenstein (NCAR)  
• 09h30 – 10h00 : Coupled models at the Max-Planck-Institute for Meteorology, by René Redler (MPI 

Meteorology)  
• 10h00 – 10h30 : Infrastructure requirements in support of Met Office models, by Steve Mullerworth 

(MetOffice)  

Software and hardware challenges for coupling technologies; chair: Mick Carter (Met Office) 
• 11h00- 11h30: Addressing the Challenge of Exaflopic Computation, by Jean-Yves Berthou (EDF R&D)  
• 11h30 – 12h00: Designing HPC Software for an Uncertain World of Hardware, by Wael Elwasif and David 

Bernholdt (Oak Ridge National Laboratory)  
• 13h30 – 14h00: Future directions for coupling technology in Earth system modeling, by Balaji (GFDL)  

14h00 – 15h15: Round table 2: software and hardware challenges for coupling technologies; chair: 
Rob Jacob  

Conclusions and recommendations 
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Summary of the round table discussions 
 
What follows is a summary of the round table discussions that took place during the workshop and in 
the following weeks via interactive wiki pages.  

The theme of the first round table was a comparative analysis of current ESM coupling technologies 
including a discussion of how the technologies address different application needs and constraints. The 
following questions were proposed for the first round table: 
• Is interoperability an unreachable dream? Should we even aim for it? 
• What should be the role of the coupling software layer (exchange of data, 

interpolation/transformation of data, weights-and-address calculation, process management, code 
generation, load balancing, etc.)? 

• How far/deep should we (try to) go in standardizing the coupling infrastructure (technical interface 
compatibility, superstructure/framework layer, scientific interface, etc.)? 

The theme of the second round table was software and hardware challenges for coupling technologies. 
The questions proposed for the discussion were: 
• How can more levels of parallelism be exposed in coupling operations? 
• How can we increase concurrency in the coupled system? 
• What is the impact of smaller memory per node on the coupling-related functions? 
• If exascale needs new languages and rewrite of component models, what will be the impact on 

coupling?  

Workshop discussions typically proceeded in an organic manner, sometimes jumping from one topic 
to the next and then back again. To improve coherence, instead of recreating the original flow of 
discussion we have organized the workshop content into several high-level topics: the definition of 
coupling, the scope of couplers, the current approaches to coupling, interoperability, and future 
coupler developments. In the concluding section, we summarize the major takeaways of the workshop 
and offer some recommendations. 

The Definition of Coupling 
For some workshop participants, "coupling" refers to the process of making two originally 
independent components interact through a separate architectural layer (as opposed to native 
subroutine calls) and necessarily involves data copy or transfer (and possibly other transformations 
such as rearrangement and/or regridding). Under this definition of coupling, the modularity of the 
original components is preserved, but the use of a separate architectural layer implies a potential loss 
of performance. Other workshop participants adhered to a more general definition of coupling: the 
action of making two originally independently modelled processes interact, regardless of the 
implementation used to realize this interaction (e.g., via data copy/transfer or via shared memory 
accesses or adding a process as a subroutine).  

The Scope of Couplers 
Since workshop participants represented a wide range of scientific and technical backgrounds, an 
important question centred on the scope of couplers.  Which functions should couplers provide and 
which functions should be left to other software components in the system?  

There was widespread agreement on certain basic functions, such as data transfer and 
interpolation/regridding, although not all software packages represented provided these functions and 
many rely on external packages for calculating interpolation weights. 2D linear, higher order, 
conservative and user-defined regridding functions were widely accepted as essential, and 3D 
volumetric regridding was also indentified as important for some applications. The type of grids 
supported should include all logically-rectangular grids (latitude-longitude, stretched, rotated, etc.) but 
also unstructured grids such as Gaussian reduced and icosahedral grids which are becoming more 
popular in the climate modelling community. Coupling of components with adaptive grids is foreseen 
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in the near/mid- term. In this case, the coupler should then be able to recalculate the regridding 
neighbours and weights during the run and efficiently manage the impact on the communication. 

There are other capabilities currently supported by a subset of the coupling technologies. Some 
couplers allow external process control of the components being coupled (e.g., time stepping), where 
others just ensure transformation and exchange of coupling data without affecting the execution of the 
component models per se. It is also interesting to note that in some cases the coupling layer can 
manage ensemble runs of the coupled model. This allows one ensemble of runs to be considered as 
one application with an added level of parallelism (the number of runs).  Discussions did not lead to a 
firm conclusion on whether or not the coupling layer should also manage the dynamic (re-)load 
balancing of the coupled model components. 

Current Approaches to Coupling  
The coupling technologies presented during the workshop can roughly be split into two main 
categories. With the "multiple executable" approach (e.g., OASIS, O-PALM), the original components 
are run as separate concurrent executables, and their main characteristics, such as memory 
management or internal parallelisation, remain practically untouched with respect to their standalone 
mode. The exchange of coupling data is performed through in-place "put" and "get" instructions which 
are configured externally for a particular run (e.g., the source and the target, the coupling frequency). 
In this case, the components expose only a data interface to the coupler and it is the user’s 
responsibility to ensure that the component models coherently define some global parameters such as 
the total run duration, the calendar, etc.  The main advantage of this approach is that it requires 
minimal intrusion into or restructuring of existing legacy codes. The drawback is that it is less flexible 
and potentially less efficient because it constrains the way components can be mapped to the 
computing hardware.  Therefore this approach can lead to a waste of resources if the components are 
"naturally sequential" (i.e., if one component necessarily waits for an input while the other is doing 
some calculation and vice-versa) and if they are run on separate sets of processors. Furthermore, in a 
multiple executable system, it is not possible to pass coupling data by reference, which would 
generally be faster. 

In the "integrated" mono-executable approach (e.g. CESM1, ESMF, FMS) each model source code is 
decomposed into init, run, and finalize units with argument lists that match the interface standard 
expected by the coupling layer. The coupling data are made available as input and/or output at each 
calling interface. Conforming to component interfaces is typically achieved by creating wrappers that 
are distinct from user code. The internals of user code, including data structures and parallelisation, are 
not affected by the wrappers. This approach is more flexible and in some cases more efficient as the 
component models can be executed concurrently, sequentially, or in some hybrid mode and coupling 
exchanges can be optimized as shared memory accesses.  Components can be nested within other 
components allowing many possible configurations of couplers and components.  However, this 
approach requires that components expose both data and control interfaces.  A driver or parent 
component controls the couplers and components, and it also enforces a consistent subset of global 
parameters (such as run duration) across component models.  If components do not already have clear 
initialize, run, and finalize units, significant restructuring may be required.  The places where data 
transfers can happen is restricted, and this may affect the control flow and require scientific 
reformulation. 

Research in Generative Programming (such as BFG2) proposes ways in which the “multiple-
executable” and “integrated” approaches can be combined. 

Interoperability and componentization  
Interoperability was an important theme throughout the workshop and was the particular point of focus 
during the first round table discussion. Participants recognized the advantages of interoperability in the 
context of Earth System Modelling, especially the ability to reuse code in new contexts and facilitate 
coupling of external components into existing models.  
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Most participants agreed that working toward some level of interoperability is a worthwhile goal. 
However, this did not imply that full-fledged “plug-and-play” compatibility is a viable goal.  Plug-
and-play compatibility implies that component models use not only the same technical coupling 
interface (how to exchange data), but also must agree on a standard scientific coupling interface (what 
data to exchange). The European PRISM project made an attempt to agree on such two-level standard 
but this proved unsuccessful. In fact, even if the technical coupling interface can in principle be 
standardized (all groups can agree to use the same coupling software), defining standard scientific 
coupling interfaces turned out to put burdensome constraints on the science itself. Therefore, PRISM 
did not put further effort into the standardization of the scientific interfaces, as keeping diversity in the 
science (by minimizing scientific constraints) was considered more important. Furthermore, in many 
cases scientists do not want to change different components frequently as climate applications are 
sensitive complex systems that need to be tuned and evaluated in detail for each particular 
configuration. 

All agree that componentization1 makes sense at some level of coupling. Componentization means 
wrapping a particular scientific model with a clear set of functions and well-defined interfaces to 
provide a convenient method for coupling and use. Componentization facilitates program 
understanding and promotes interoperability; in fact, the difficult step in coupling is usually 
identifying and harmonizing coupling fields across components, not adapting model codes to the same 
technical interface (i.e., the same coupling layer). Componentization also provides a logical 
organization of the source code and helps prevent evolution toward a monolithic code. However, at 
some point, componentization may incur a penalty of performance, or reduce the code readability.   

Further coupler developments in the short, mid and long term 
Existing couplers have been developed by different groups with different goals, priorities and 
constraints in mind. In the short and mid term, this is likely to continue.  Therefore, it will be 
important to continue to develop, in parallel, a reduced number of coupling technologies, each having 
a significant amount of resources (~5 FTEs at minimum), and each targeting a different coupling 
approach. Of course, sharing some building blocks (e.g., the conservative remapping algorithm) 
among these technologies should be encouraged. The coupler development teams should include 
computing scientists interacting frequently with climate modelling scientists. 

In all cases, an effort should be made to identify, share, and promote best practices in coupling, such 
as the calculation of fluxes at the resolution of the “exchange grid” (see FMS presentation) or 
adaptation of the surface tiles in the atmosphere model to fit the ocean model coastline.  

In the longer term, the coupling technologies will have to adapt to future computer architectures. 
While the individual arithmetic processors are probably going to remain at ~1 GHz (109), there will 
most likely be a massive increase in the number of cores, with increased heterogeneity (e.g., a mix 
between CPUs and GPUs) and modest increases in available memory per core and inter-node 
communication throughput. One way to reach the exascale (O(1018) FLOPS) expected before the end 
of the decade is to expose new levels of parallelism. The following proposal was presented, assuming 
that processors remain at O(109) clock speed: 

• Increase the resolution. This will allow a higher level of parallelism within individual 
model components, which we expect to execute on O(105) processors.  But the throughput 
of the model is expected to continue to decrease with increasing resolution. 

• Increase the number of concurrent components. O(10) concurrent components should be 
run in one coupled application; concurrent coupling using a forward-only timestep (i.e., 
X(t+1) = X(t) +f[Y(t)]) could be applied to sub-components (e.g., physics time 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  Componentization in geoscience modeling community is akin to software modularization. ESM components 

should not be confused with the notion of components as defined by the Component-based Software 
Engineering community.	  
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dependencies in the atmosphere) in addition to the ocean and atmosphere components for 
which it is traditionally used. 

• Increase the number of members in ensemble simulations. One ensemble simulation with 
O(100) members should be considered as one climate application with the different 
members adding one level of parallelism. 

• Increase the concurrency in the workflow. Additional parallelism of O(10) should be 
reached at the level of the different workflow tasks (pre-processing, execution, post-
processing, analysis). 

Parallelization along the time dimension and run of multi-model ensembles were also mentioned as 
other ways to increase the parallelism.  

Many aspects of running with increased concurrency of components were discussed. With more 
concurrent components, load balancing will become even more difficult but this might not be as great 
a concern as the cost of the CPU cycle will most probably no longer be the limiting factor. Memory 
movement (e.g. coupling data transfer) will likely become more expensive and so it may be necessary 
for models to stop decomposing their domains independently (letting the coupler sort it out) and 
instead co-locate points from the same region on the same node as much as possible. Participants 
proposed several other ways to reduce the coupling-related communication costs. Overlay of 
calculation and communication (e.g., a communication is started, some computation is executed at the 
same time, and then the communication is checked for completion) and redundant calculations (i.e., 
defining very wide halos and doing the calculation for the same grid points by multiples processes) are 
options that should be explored. Of course, we can always hope for faster hardware networks and 
improved communication implementations using MPI or possible alternatives. 

Regarding future platforms, the multiple executable coupling approach may still be the choice of a part 
of the community. Therefore, it is important to ensure that future operating systems support the 
MPMD mode.  

Finally, the impact of new languages (beyond F90 and MPI) is hard to evaluate. Some current 
programming models (e.g., CUDA for GPUs) are not amenable to a driver-kernel programming 
model. In all cases, the community will have to get organized to ensure that the new languages and 
technologies are adopted at the same pace by the developers of the different components. If the new 
programming languages and paradigms force the community to rewrite model code, this should be 
seen as an opportunity to consider the adoption of community-wide technical standards that would 
facilitate the coupling or even to unify coupling approaches and share developmental costs.  
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Conclusions and recommendations 
 

• The advantages of interoperability and componentization in the context of Earth System 
Modelling are recognized. However, plug-and-play compatibility should not be an objective 
per se, as it requires a standardization of the scientific coupling interfaces among the 
components (i.e., what field data to exchange). Furthermore, swapping model components 
quickly and frequently is not of primary importance in the climate modelling community as 
climate models are complex systems that require detailed tuning and validation for each 
combination of components.  

• Current coupling technologies can roughly be split into two main categories. The “multiple 
executable” approach is somewhat less flexible and can be less efficient in some cases but is 
straightforward to implement requiring minimal modification to individual models. The 
“integrated” mono-executable approach, which requires the original codes to be split into init, 
run and finalize units and some standardization of the resulting component interfaces, limits 
the places in code where data exchanges can happen.  Although this can simplify program 
flow, it can also affect time sequencing and require scientific reformulation.  However, 
because components can be run sequentially or concurrently, there are additional opportunities 
for performance optimization 

• For maximum coupling flexibility and efficiency, all climate component models should be re-
factored into init, run and finalize units. Where the norm is a multiple executable approach, 
such as the European climate modelling community, it may be difficult to achieve the 
agreement on component interfaces required for integrated coupling. To satisfy all cases, an 
“ideal” coupling technology should therefore offer both approaches in order allow an easy 
assembling of legacy code but also provide more efficient and flexible coupling when 
interface agreements can be reached. Current research in Generative Programming explores 
approaches that may enable such an “ideal” coupling technology to be built.  

• Existing coupling technologies have been developed with different priorities and constraints. 
In the short term, it is recommended to keep the parallel development of a reduced number of 
coupling technologies, each one with a significant amount of resources (~5 FTEs at a 
minimum). The coupler development teams should include computing scientists interacting 
closely with climate modelling scientists. 

• In all cases, the different coupler developers should interact more closely and share more 
infrastructure building blocks (e.g. remapping/regridding algorithms, decomposition 
descriptions, metadata utilities, parallel I/O libraries, performance timers, etc.). Best practices 
in coupling should also be discussed, identified, and promoted. 

• On the longer term, increased parallelism is seen as essential to exploit the exaflop platforms 
expected before the end of the decade. It will then be crucial to limit the load of the associated 
data communication by carefully distributing the coupled components over available 
processes or by finding ways to diminish its impact (overlay of communication and 
calculation, redundant calculations, etc.). 

• If model rewrites are required in new programming languages in the years to come, we should 
take advantage of that opportunity to better agree on coding and coupling standards that will 
better facilitate the coupling of Earth System components between different groups. As future 
hardware will probably require significant changes in coding approaches, 
leveraging/combining our resources as much as possible to address the new hardware 
challenges should be seriously considered.  

• The challenge of leveraging the exascale for climate modelling should be addressed with 
significant manpower and funds so to ensure that climate science remains a major driver for 
high performance exascale computing. 
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Extended abstracts 

The Earth System Modeling framework ESMF 

by Ryan O'Kuinghttons (NOAA/CIRES)  

General Overview 
The Earth System Modeling Framework (http://www.earthsystemmodeling.org) is open 
source software for building modeling components, and coupling them together to form 
weather prediction, climate, coastal, and other applications. ESMF was motivated by the 
desire to exchange modeling components amongst centers and to reduce costs and effort by 
sharing codes. 

The ESMF package is comprised of a superstructure of coupling tools and component 
wrappers with standard interfaces, and an infrastructure of utilities for common functions, 
including calendar management, message logging, grid transformations, and data 
communications. The project is distinguished by its strong emphasis on community 
governance and distributed development, and by a diverse customer base that includes 
modeling groups from universities, major U.S. research centers, the National Weather 
Service, the Department of Defense, and NASA. The ESMF development team is centered at 
the NOAA Earth System Research Laboratory and the Cooperative Institute for Research in 
Environmental Science at the University of Colorado. 

Rationale and History 

The ESMF collaboration had its roots in the Common Modeling Infrastructure Working 
Group (CMIWG), an unfunded, grass-roots effort to explore ways of enhancing collaborative 
Earth system model development. The CMIWG attracted broad participation from U.S. 
weather and climate modeling groups at research and operational centers. In a series of 
meetings held from 1998 to 2000, CMIWG members established general requirements and a 
preliminary design for a common software framework. 

In September 2000, a critical mass of CMIWG participants developed a coordinated response 
to a NASA solicitation that called for the creation of an “Earth System Modeling 
Framework.” They received awards for linked proposals that covered development of the 
framework and its incorporation into modeling and data assimilation applications. As the 
ESMF project gained momentum, it replaced the CMIWG as the focal point for developing 
community modeling infrastructure in the U.S. The second major development cycle for 
ESMF saw the framework emerge as a multi-agency effort. Major new grants came from 
NASA, the Department of Defense, NOAA, and the National Science Foundation, and many 
smaller ESMF-based application adoption projects were funded in domains as diverse as 
space weather and sediment transport. During this project phase, the central data structures in 
ESMF were completely rewritten to improve flexibility and extensibility. 
In 2008, ESMF was chosen as the technical basis for the National Unified Operational 
Prediction Capability (NUOPC), a consortium of U.S. operational weather and climate centers 
that aims to deliver an ESMF-based, managed, multi-model ensemble. The emergence of this 
large-scale national project marks the beginning of the framework’s third phase. 

Component Architecture 

ESMF is based on principles of component-based software engineering. The components 
within an ESMF software application usually represent large-scale physical domains such as 
the atmosphere, ocean, cryosphere, or land surface. Some models also represent specific 
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processes (e.g. ocean biogeochemistry, the impact of solar radiation on the atmosphere) as 
components. In ESMF, components can create and drive other components so that an ocean 
biogeochemistry component can be part of a larger ocean component. 

ESMF offers two kinds of components: a Gridded Component (GridComp), which is 
associated with a physical domain, and a Coupler Component (CplComp), for transforming 
and transferring data between GridComps. ESMF components exchange information with 
other components only through State objects. A State contains data types representing fields, 
arrays, or other States. Each Gridded Component is associated with an import State, 
containing the data required for it to run, and an export State, containing the data it produces. 

In order to adopt ESMF, modelers must decide how to organize their code as a set of 
GridComps and CplComps, then split these components into standard ESMF methods 
(initialize, run, and finalize, each of which may have multiple phases). The next step is to 
wrap native model data structures with ESMF data structures. This can be done either in index 
space, using a very general ESMF Array class, or in physical space, in which case model grids 
must be expressed using the ESMF Grid class. If Grids are used, ESMF can generate the 
interpolation weights needed for remapping between components. 
ESMF enables components to run sequentially, concurrently, or in a mixed mode. 
Applications usually run with all components linked into a single executable program, but 
there is also support for running separate components as multiple executables. ESMF is 
written mainly in C++, and has Fortran and C interface bindings. 

Coupling and Other Capabilities 

Grid remapping is a central function of ESMF, and the framework supports a wide variety of 
grids and remapping options. Generation of interpolation weights and their application is fully 
parallel. ESMF supports first order conservative, bilinear, and a higher-order finite element-
based patch recovery method for remapping. Logically rectangular and unstructured grids are 
both supported, in 2D and 3D. There is a range of options with respect to masking, handling 
poles, and behavior of unmapped points. The remapping system is flexible and modular, in 
that the calculation of interpolation weights can be performed either during a model run or 
offline, and the subsequent application of weights can be made as a separate call. 

The ESMF team is actively developing extensive metadata handling capabilities. This effort 
was motivated by the growing need to carefully document the provenance of the data 
produced by climate and other simulations, and by the desire to automate aspects of coupling 
to enhance cross-institutional interoperability. ESMF has a class that represents metadata as 
name-value pairs within either prefabricated or custom “Attribute packages.” Methods of this 
class can be used to aggregate, store and output metadata. Metadata schemata follow 
community conventions such as the Climate and Forecast (CF) conventions, ISO standards, 
and the METAFOR Common Information Model (CIM). 

Overview of Results 
Since its inception in 2002, the ESMF effort has steadily grown, attracting new users, new 
offshoots, and new sponsors. Its success can be measured by the increasingly robust and fully-
featured software that it has delivered, by the growing pool of ESMF components and 
applications in the community, and by the emergence of new partnerships facilitated by this 
shared infrastructure. 
Timing results for a variety of codes show that the overhead of using ESMF components is 
typically negligible (< 3% of runtime), and that key operations have good scaling to tens of 
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thousands of processors. Grid remapping and parallel communications are highly scalable and 
extensible to many new grid types. The framework is very robust and is exhaustively tested 
nightly on 24+ platforms with a suite of over 4000 tests (covering remapping accuracy, API 
correctness, use test cases, etc). ESMF customers are now finding that they are increasingly 
able to achieve results using the framework that they cannot through other means. 

There are currently more than 70 ESMF components and applications in the community. The 
largest ESMF systems are the GEOS-5 model at NASA Goddard Space Flight Center, which 
is structured as a deeply nested component hierarchy; the whole Earth system developed by 
the Battlespace Environments Institute, which combines coastal, watershed, ocean, 
atmosphere, and space weather components into multiple models; and the new numerical 
weather prediction system at the National Centers for Environmental Prediction, which will 
be a key part of a next-generation operational multi-model ensemble. These activities have 
been deeply integrative, bringing to bear the resources of multiple organizations on problems 
too large for any one of them to address alone. 

Future Plans 

In the future, ESMF will continue to improve and extend its functionality, improve training 
materials, and expand and support its customer base.  The project is also evolving to address 
new concerns. ESMF initially focused on coupling components intended to run on the same 
computer, with performance as the foremost concern. In response to changing science 
requirements and technical trends, future plans focus on leveraging the interface and metadata 
standardization implicit in ESMF adoption in order to enable ESMF components to operate in 
more heterogeneous environments. One aspect of this is linking ESMF components to web-
based coupling technologies. Another is introducing ESMF components and models into 
science gateways that catalog and integrate diverse, distributed resources. 
The integration of modeling with data services is a key part of this vision. The Curator 
project, initiated in 2005 with NSF funding and continued under NASA and NOAA, pairs 
ESMF leads with collaborators from the NOAA Geophysical Fluid Dynamics Laboratory, the 
Earth System Grid (ESG) data distribution portal project, the Georgia Institute of Technology, 
and the E.U. METAFOR project. The Curator group is creating a user interface for ESG 
based on the METAFOR Common Information Model. This will provide access to much 
more structured, searchable information about the models used to generate climate datasets 
than has ever been available before. The portal will be used to support the fifth Coupled 
Model Intercomparison Project, part of the next Intergovernmental Panel on Climate Change 
assessment. 
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A New Flexible Coupler Designed for Earth System Modeling for CCSM4/CESM1 
by Anthony Craig (NCAR2 Earth System Laboratory) 

The Community Climate System Model (CCSM) development is based at the National Center 
for Atmospheric Research (NCAR) in Boulder, Colorado, USA. CCSM is a state-of-the-art 
global climate model consisting of four fundamental physical components: an atmosphere 
model, an ocean model, a land surface model, and a sea ice model. In addition, a coupler (or 
driver) is used to exchange boundary data between the components and to coordinate the time 
evolution of the physical models. CCSM is used to understand the Earth's global climate 
system, to predict the effects of climate change, and to understand past climates. It is 
developed as a high performance computing application but is used on a wide variety of 
platforms.  Various fully prognostic (active) data (where coupling fields are derived from 
input files), dead (for testing), and stub models are available for use in the system.  The 
Community Earth System Model (CESM) is an extension of CCSM that includes an 
additional land-ice component, a higher altitude atmosphere model option, land and ocean 
biogeochemistry capabilities, and an atmospheric chemistry model.  For the purposes of this 
discussion, CCSM4 and CESM1 are the same model and the name “CCSM” or “CCSM4” 
will be used to describe capabilities in both models. 

In general, couplers carry out critical but limited functions within coupled systems.  These 
functions normally include the support of data communication between components, the 
sequencing and integration control of the system as a whole, and the execution of coupling 
methods such as mapping (interpolation), merging of fields, and diagnostics.  Sequencing and 
integration control are associated with the time evolution of the system and deal with issues 
such as the temporal sequencing of components and the coupling frequencies and lags 
between components.  Separately, there are several basic characteristics of coupled systems 
that have implications on the system design.  The first characteristic is whether the system is a 
based on a single or multiple executable design.  The second is how components can be laid 
out on processors; whether sequential, concurrent, or mixed.  The third characteristic is 
whether data is communicated between components directly or through a central “hub”.  And 
finally, the fourth important characteristic is whether the system is coupled via a top-level 
driver or through coupling calls from inside components directly.  The coupler functions and 
design characteristics play an integral role in determining the climate model system 
implementation. 
There is a long history of building coupled climate models at NCAR.   CCM development 
started in the 1980s and was one of the first coupled climate models.  It consisted of 
prognostic atmosphere and land models coupled to simpler prescribed ocean and ice models.  
The model was fully sequential, all components ran on the same grid, there was no memory 
parallelism, and surface models were called from the atmosphere component directly.  In this 
model, the atmosphere component acted as the top-level driver and communication was 
through interface calls without any need for interpolation.  In the mid-1990s, NCAR started to 
develop more sophisticated coupled climate models with fully prognostic components in ways 
that required distinct coupling software.  Initially, there were two parallel efforts.  PCM was a 
single executable, memory parallel implementation where the atmosphere/land, ocean, and 
sea ice were all on distinct grids but running on the same processors.  The initial target 
platforms for PCM were CM5, T3D, T3E, and SGI Origin.  Coupling was carried out with a 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2	  NCAR is sponsored by the National Science Foundation	  
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distinct driver, components placed coupling data in a coupler common block, and coupler 
functionality such as mapping was carried out as part of the top-level driver implementation.  
The other mid-1990s NCAR coupled climate model was CSM1.  CSM1 was a multiple 
executable, shared memory parallel implementation with distinct grids for the 
atmosphere/land and ocean/ice.  In CSM1, all components ran on distinct hardware processors 
and there was a separate hub coupler that mediated communication, mapped fields, and 
implicitly handled time integration.  Coupling in CSM1 was done via calls directly in 
components.  The initial target platforms for this implementation were Cray vector platforms 
such as the YMP and C90 as well as SGI Origin systems.  In around 2000, an effort was made 
to merge the best features of PCM and CSM1 into a single model called CCSM2.  The 
CCSM2 coupling architecture largely followed CSM1 with a multiple executable, concurrent 
design using a separate hub coupler.  But the CCSM2 components were now partly based on 
the work of PCM with respect to memory parallel capabilities, although the coupler in 
CCSM2 was still a single processor application.  CCSM2 targeted general distributed shared 
memory systems.  The coupler became a fully memory parallel component with the release of 
CCSM3 in 2004. 
With the CCSM4 release in 2010, a completely new approach was taken to coupling climate 
models.  CCSM4 is a single executable implementation that contains a top-level driver, 
components are coupled via standard init/run/finalize interfaces, and individual components in 
CCSM4 can be laid out on processors in relatively arbitrary ways such that components can 
be run on identical or independent hardware processors.  The top-level driver that runs on all 
processors controls the processor layout and time sequencing of the components.  A separate 
coupler component that can run on a subset of all the processors still exists in the system to 
map, merge, and carry out other coupler functions.  Components in CCSM4 are parallelized 
with MPI and OpenMP.  The driver/coupler grids, component layout on processors, 
decompositions, and configuration options are set at run-time based on Fortran namelist 
inputs and communication with components at initialization.  The CCSM4 driver/coupler uses 
Model Coupling Toolkit (MCT) datatypes and methods extensively, mapping weights are 
generated offline, and a new parallel IO (PIO) library is being used to support improved I/O 
performance particularly in the area of memory scaling. 
There were several reasons for migrating to this new coupling approach in CCSM4.  The new 
implementation improves performance because of greater flexibility in laying out components 
on hardware processors compared to the prior concurrent-only CCSM3 system.  The new 
processor layouts also allow models to be coupled more tightly when needed without worries 
over concurrent performance.  CCSM4 provides an ability to run on a single processor 
without MPI sequentially but is more memory and performance scalable for runs at much 
higher resolution.  Finally, implementing CCSM4 using a top-level driver with 
init/run/finalize interfaces allows compatibility with the Earth System Modeling Framework 
(ESMF) superstructure. 

As mentioned above, components can be laid out on processors in relatively arbitrary ways, at 
least in a technical sense.  In addition, model results are independent of the component layout 
on hardware processors because the driver sets the temporal evolution of the system not the 
processor layout.  However, in the current implementation of the driver, components cannot 
actually be run completely concurrently.  For scientific reasons related to consistency of the 
surface albedos and the atmospheric radiation calculation, the atmosphere model run method 
is always called after both the sea ice and land models’ run method.  This is the only 
constraint on concurrency in the system at the present time.  But as a result, the optimal 
component processor layouts usually have the atmosphere model overlapping hardware 
processors used by the sea ice and land models.  
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The scaling of the CCSM4 coupler has been evaluated using four basic coupler kernels.  A 
flux calculation, a merge operation on the ocean grid, a rearrange of ocean data between two 
different decompositions, and a mapping of data between an atmosphere and ocean grid were 
run at two different resolutions and on three hardware platforms from 1 to 10,000 processors.  
Time in seconds for each test case was collected.  The timers were aggregated over the full 
20-day dead model test, and barriers were used to eliminate the impact of load imbalance 
outside the kernel. 

The scaling of the flux kernel, which is trivially parallel (there is no communication) and very 
FLOP intensive, is excellent.  Linear scaling is demonstrated across all processor counts, 
resolutions, and machines.  The merge kernel is also trivially parallel but is primarily a 
memory intensive operation.  In the merge, several fields are copied out of memory and 
combined using a simple mult-add operation.  Those merged fields are then copied back into 
memory.  The scaling of the merge operation is linear at lower processor counts but then 
flattens out at higher processor counts as the number of gridcells per processor decreases 
below a few hundred.  It’s likely the scaling of the merge is influenced by cache line 
efficiency in this regime. 
The rearrange kernel is dominated by communication.  In this kernel, fields are rearranged 
between two different decompositions on a common set of processors.  This is almost an all-
to-all communication operation.  As expected, the scaling is sub-linear at lower processor 
counts and then quickly flattens out.  Scaling performance is highly dependent on the machine 
and resolution in this case.  The rearrange kernel speeds up on all machines out to 100 to 500 
processors.  At higher processor counts, the scaling is flat or worse.  The mapping kernel 
scaling is similar to the rearrange kernel.  The mapping operation involves rearranging data 
and applying mapping weights in a mult-add loop to derive fields on new grids.  At lower 
processor counts, the mult-add plays a relatively larger role in the total mapping cost.  But at 
higher processor counts, the scaling of the mapping is consistent with the scaling of the 
rearrange where performance flattens out and depends heavily on resolution and hardware 
architecture. 
The improvements in the memory and performance scaling capability of CCSM4 compared to 
CCSM3 are significant.  Performance improvements in the coupler were needed to keep up 
with improvements in the rest of the system and to achieve new science goals.  The model is 
now being run at global resolutions of around one tenth of a degree on tens of thousands of 
processors with reasonable performance and scaling. 

Continual improvement in climate model performance in the future may become more 
difficult.  Most of the gains in the last decade came from faster hardware on a per processor 
basis and improvements in basic grid decompositions, memory parallelization strategies, and 
communication algorithms.  Unfortunately, future generation hardware is likely to consist of 
orders of magnitude more processors that are slower, heterogeneous, and with less and slower 
memory.  If so, future hardware will require models to scale to even higher processor counts 
just to maintain today’s model throughput at current resolutions.  New component, physics, 
gridcell, tracer, or time parallelism may need to be found in the system, and new 
communication strategies such as one-sided or the overlapping of non-blocking 
communication with computation may need to be implemented. 
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The Model Coupling Toolkit  
by Robert Jacobs and Jay Larson (Argonne National Laboratory)  

MCT was designed to be an application neutral approach to solving parallel coupling 
problems in multiphysics applications. “Application neutral” means not only that MCT can be 
used in other applications besides climate modeling but also MCT does not impose any 
structure on the overall application. Choices such as timestepping, number of models or 
number of fields and overall architecture can affect the possible science done and should be 
left to the coupled application developer. The developer also should be able to choose a la 
carte which pieces of the toolkit to use in the coupled application. Application neutrality and a 
library approach were central to our design philosophy in creating the Model Coupling 
Toolkit (MCT). The application-neutral elements of coupling include data description, 
efficient movement of that data in parallel and support for parallel data transformation and 
interpolation.   

MCT does not prescribe how communication and process management is done within the 
model.  Instead, MCT provides a datatype to describe the assembled coupled system to MCT. 
MCT assumes MPI-based parallelism, but includes a small MPI-replacement library that 
allows MCT to be used in non-parallel applications. MCT’s main datatype is a field data 
object supporting storage of arbitrary numbers of real- or integer-valued fields indexible using 
string tokens. This holds all data to be transferred during coupling.  Another important 
datatype is a highly flexible domain decomposition descriptor that employs virtual 
linearization to represent multidimensional index spaces. This datatype is used by MCT to 
automatically derive communications schedules for parallel data transfer and redistribution.  
Calls to simple send/receive pairs using the MCT data storage type and the derived 
communication schedule as inputs perform all of the data transfer. Distributed storage for pre-
computed interpolation coefficients is also provided and MCT is able to query the coefficients 
to derive communication schedules for parallel interpolation. All of the aforementioned 
classes have comprehensive method support. 

MCT’s native API is Fortran-based, but bindings for C++ and Python are also available. MCT 
includes a highly portable build system based on GNU autoconf. MCT’s programming model 
derives from Fortran90, comprising module use to access MCT classes and methods, 
declaration of variables of MCT’s datatypes, and invocation of MCT’s methods to perform 
coupling operations. To use MCT, the coupled model developer first uses their application 
knowledge to locate logical interaction points in the legacy subsystem model.  Once this 
assessment is made, the user first adds code to the model to declare and initialize MCT’s main 
datatypes for coupling. The user inserts MCT handshaking calls between model pairs to 
initialize the communication schedules.  With the “run” methods of the model, the user places 
the calls to load the model’s data in to the MCT datatype and then call MCT’s parallel 
communication and/or interpolation methods 
The most difficult steps conceptually are defining the virtual linearization of mesh and index 
spaces to support the MCT communication methods.  We find that most new users of MCT 
are able to build their own MCT-based parallel coupled models after experimenting with the 
short example codes bundled in the MCT distribution, and reading and refactoring their 
source code.  The ease-of-use is the primary benefit of using MCT while its main limitation is 
a lack of support for internal computation of interpolation weights and tools for MPI 
communicator construction. MCT is robust; it is the basis of the coupler in all versions of the 
U.S. Community Climate System Model since 2004 (CCSM3, CCSM4 and CESM1), 
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supporting literally thousands of model years of coupled climate integration by a community 
of hundreds of scientists. 
When considering MCT’s future development, the arrival of exascale presents the most 
challenges. The paucity of per-core memory at exascale means copying field data and 
replication of domain decomposition descriptor data will have to be revisited. Field data 
copying could be obviated through use of general mesh representation software in all 
components. The domain decomposition descriptor problem may be attacked by using space-
filling curves as virtual linearizations.  Tolerating faults and changing pools of processors 
mean MCT’s assumption of a static pool will also have to be revisited.   At present, MCT 
supports application on tens of thousands of processors and is well positioned for future 
coupled model challenges. 
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The dynamic parallel O-PALM coupler 
by Andrea Piacentini, Thierry Morel, Anthony Thévenin, Florent Duchaine (CERFACS) 

Since 1996, CERFACS is developing the PALM coupler, which is currently used for more 
than 50 research and industrial projects, ranging from operational data assimilation, to multi-
physics modelling, from climate change impact assessment to fluid and structure interactions. 
O-PALM is the open source version of PALM, distributed under the LGPL license. This new 
distribution policy arises from the consideration that the coupler has reached a high degree of 
maturity and stability. This makes easier to set up new coupled applications and allows other 
developers to contribute to the coupler evolution. 

At the very origin of the project there was the commitment to provide the software backbone 
for the implementation of operational data assimilation suites. In particular, the French 
oceanography project MERCATOR was facing the challenge to set up a completely new 
operational forecast and assimilation system. The choice of the model configuration was not 
yet finalized, there were several candidate assimilation methods to test, there were different 
kinds of observations to handle and the same system should have been used for research and 
operations. All these needs of flexibility lead to the implementation of the assimilation suite 
as a coupling between model, observations handling, error statistics and algebra instead of 
hard-coding data assimilation routines in the model, or vice-versa. 
Some data assimilation algorithms are based on an iterative minimization: this implies the 
repeated execution of the tasks and the total number of iterations is not necessarily known 
beforehand. Moreover, in some configurations some tasks are activated only if some 
observations are available at run-time. This specific requirement imposed to conceive a 
coupler of independent parallel codes capable to deal with complex coupling algorithms 
allowing for the conditional and/or repeated execution of the coupled components. The main 
goals and constraints were user friendliness, modularity, portability and high performances on 
parallel computers. OASIS was not a suitable choice for the lack of the dynamic aspects. On 
the other side, not all the OASIS features were needed for data assimilation at that time, in 
particular all the grid to grid interpolation issues. This lead to the design of a new MPMD 
dynamic parallel coupler based on the MPI message passing and process management 
standard library. 
In our definition, a dynamic coupler has to fulfil three main requirements:  

• process management: this means that the coupler has to be able to start and 
synchronise the tasks and to handle algorithms with loops and conditional switches. 
• buffered communications: in order to grant full flexibility, avoiding deadlocks 
dependencies on the production and reception order, at least the production side of a 
communication has to be non blocking. This requires the explicit handling of a storage 
space for pending communications. This feature allows for some extra possibilities, such as 
the linear combination of cumulated fields and the explicit permanent storage of objects 
that are to be repeatedly received.  
• object versioning: the flexible use of a temporary storage space for parallel 
communications requires special care to grant the coherency of the stored global objects. 
The Last In Only Out paradigm is adopted: every new version of an object replaces the 
previous ones. Nevertheless, for parallel communications, we count a new version of an 
object only when all the processes of the producing code have provided their contributions. 
For loosely synchronised codes, it implies the introduction of stamps to keep track of what 
version of an object new contributions belong to.  
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The same way, in a parallel coupling, a coupler has to deal with two levels of parallelism: 
• Concurrent tasks parallelism: independent tasks can run concurrently on separate sets 
of processes. The coupler has to deal with the concurrent execution, to establish all the 
needed intercommunication contexts and to grant synchronisation. 
• Distributed coupled codes: as a second level of parallelism we account for the inner 
parallelism of the coupled codes, mostly related to data distribution. The coupler has to 
grant private and robust intracommunication contexts and, most important, to be able to 
manage the data exchanges between sets of processes, including the remapping between 
codes with different distributions of the same physical objects. 

Since one of the main aims of coupling is the reuse of legacy codes, we tried to reduce the 
intrusiveness of the coupling instructions in the source codes. For this reason we adopted the 
so-called end point communication paradigm: the producer of an object does not know 
anything about the recipients (if any) and the other way round. The coupler makes the 
matching. In order, once more, to minimize the interventions in the codes, we defined a 
reduced set of multi-language API calls, complemented by a very detailed Graphic User 
Interface: most information - such as the coupling algorithm, the communication patterns and 
the parallel distributions - is easily described in the graphic interface. The changes in the code 
have minimal impact and, because of the use of the one-sided communications paradigm, they 
are independent of the specific coupling algorithm. 

The last constraints that drove the design of PALM are related to its uses and diffusion.  The 
operational usage imposes robustness and high performances. This not only determined some 
implementation choices, but it also lead to the integration in PALM of  a real-time monitor, 
allowing to display in the graphic user interface the status of the execution while running and 
of a  performance analyser that works on trace files and helps tuning and optimising the 
coupled application. For research applications there are other criteria, such as portability, that 
imposed to rely on standard coding and message passing techniques) and user friendliness. 
The latter not only drove the design of the Graphic User Interface, but it lead also the the 
introduction of an algebra toolbox providing a palette of predefined generic algebraic 
operations ranging from BLAS to parallel linear algebra solvers and minimisers that can be 
coupled to any other user defined code. 
The coupler implementation went through several steps. At the very beginning of the project, 
when the MPI2 standard was recently published, but hardly any complete and robust 
implementation was available, we implemented an MPI1 emulation based on a pool of idle 
processes, released under the name of PALM_RESEARCH, later changed into PALM_SP. It 
was dedicated to functional tests, but in practice it proved to be very effective in some cases 
and it still used for some full size applications. Some interesting features of this first 
implementation could now be seen as possible optimisations under some conditions and will 
be hopefully reintroduced in the current PALM version in a near future. 
In 2003 we released the first fully MPMD version of PALM under the name PALM_MP. It 
was based on the MPI2 process management and communication layer. The main components 
of PALM_MP are:  

• The scheduler that handles the process management and the execution of the coupled 
components accordingly to the algorithm described in the user interface. PALM can 
schedule several parallel codes to run concurrently to perform independent tasks if enough 
resources are available. Since starting an independent executable always causes a 
overhead, PALM offers the option to merge into a single executable the coupled 
components that are started in a sequence. 



19 
 

• The optimised communication scheme managed by a driver that takes care of the data 
transfer between parallel programs. This is one of the most evolved components of PALM 
and handles very complex communication patterns with some very practical features, such 
as the remapping of objects exchanged by parallel codes with different distributions, the 
selection of object subsets entirely from the user interface, the presence of an explicitly 
managed permanent repository for objects to be repeatedly received.  

Since then the coupler has been constantly enhanced and optimised. With respect to 
PALM_MP, the current O-PALM release offers  

• the possibility to interface commercial black-box codes (such as Fluent, Abaqus 
MSC/MARC) by the use of external dynamic libraries and/or a socket based layer  
• a simplified working mode entirely compliant with the MPI-1 library 
• the optimisation of repeated well synchronised communications that don't require the 
intervention of the driver 
• the enhancement of the parallel algebra toolbox that is soon going to include the 
CWIPI interpolation library from ONERA for the grid to grid remapping.  

Current PALM applications largely go beyond data assimilation and cover many fields of 
multi-physics coupling ranging from oceanography to hydraulics, from hydrology to 
agronomy, from aeronautics to space engineering and so on. Some of them are particularly 
representative of the advantages coming from the dynamic coupling and from the user 
friendliness of the API's and of the user interface. For instance we could mention the use of 
PALM for the shape optimisation of a combustor cooling system. In this kind of applications, 
several instances of a distributed CFD code run in parallel and are dynamically driven by a 
minimisation algorithm. Another significant application is the coupling of an adaptive 2D 
surface biosphere model to different parallel  atmosphere circulation limited area models. In 
such a case, not only the dynamic features of PALM can easily take into account the adaptive 
model, but also the compact syntax used to describe data exchanges allows for a quite generic 
implementation with different atmosphere models. Some full size, near real time applications, 
like the operational ocean data assimilation and forecast suite of the MERCATOR operational 
oceanography centre or the air quality data assimilation and forecasting system Valentina, 
based on the MOCAGE chemistry and transport model, provide a very satisfactory test bench 
for the PALM performances in large scale parallel applications. Finally we should mention 
the recent use of PALM for the implementation of a demonstrative data assimilation suite 
based on a 1D hydraulic model used in flood forecasting. The graphic algorithm 
representation proves to be a very useful pedagogical tool. Furthermore, the generic 
formalism allows for the application of the demo suite to real life applications with no 
changes in the code lines. 
The open source distribution of O-PALM is the most suitable environment to accept 
collaborations and contributions on the coupler development. Among the most important 
technical challenges for the evolution of O-PALM towards exascale applications, there is the 
search for the best trade-off between a centralised and a fully distributed approach. If on one 
side process management and monitoring is a key issue for dynamic coupling, it imposes an 
overhead and a risk of bottlenecks for MPP applications. Optimisations bypassing the PALM 
scheduler and launcher are under study, but they have to keep the capability of reorganizing 
the layout of the application in case, for instance, of automatic load balancing or adaptive 
meshes. The same considerations apply for the communication handling: to obtain very 
effective parallel communications on MPP configurations, we'll have to look the best 
compromise between flexibility and monitoring on one side and performances on the other. 
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In particular, for climate modelling applications, the use of O-PALM and the CWIPI 
interpolation library (with specific enhancements) has to be thoroughly studied and evaluated 
on test cases of increasing complexity and size.  
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OASIS, a coupler for climate modelling   
by Sophie Valcke (CERFACS) 

1. Design goals and strategy 

In 1991, CERFACS began to contribute to climate modelling by assembling ocean and 
atmosphere General Circulation Models developed independently by different groups. After 
an initial period of investigation, a decision was made to implement a technical coupling layer 
between the ocean and atmosphere components in the form of an external coupler, i.e. a 
separate executable performing the regridding of the coupling fields and a coupling library 
linked to the component codes. This choice ensured a minimal level of interference in the 
existing codes (low intrusiveness) while focussing on modularity and portability. Two years 
later, a first version of the OASIS coupler was distributed to the community. The OASIS3 
version [Valcke2006], widely used in the climate modelling community today, is the direct 
evolution of this first version. In 2001, in the framework of the EU PRISM3 project, during 
which active collaboration took place with NEC Laboratories Europe (NLE-IT), SGI and the 
French Centre National de la Recherche Scientifique (CNRS), the development of a new fully 
parallel coupler, OASIS4 [Redler2010], began targeting higher resolution climate simulations 
on massively parallel platforms. Parallelism and efficiency drove OASIS4 developments, but 
the concepts of portability, flexibility and low intrusiveness that made OASIS3 a success were 
maintained. 

2. Implementation  

OASIS3 and OASIS4 are portable sets of Fortran and C routines. After compilation, they 
form a separate Driver & Transformer executable (D&T) and a model coupling interface 
library, the PSMILe, that needs to be linked to and used by the component models. 

Coupling configuration 

At run time, the D&T first reads the coupled run configuration defined by the user and 
distributes the corresponding information to the different component models. This user-
defined configuration contains all coupling options for a particular coupled run, e.g.  the 
source and target components, the exchange period, and the regridding chosen for each 
coupling exchange. During the run, the Driver-Transformer executable and the component 
model’s coupling interface perform appropriate exchanges based on this configuration. With 
OASIS3, the configuration information is contained in a text file while with OASIS4 it is 
provided in XML4 files. A Graphical User Interface (GUI) facilitates the creation of those 
XML files. 

Process management 

In a coupled run using OASIS3 or OASIS4, the component models generally remain separate 
executables with main characteristics, such as the general code structure and memory 
management, untouched with respect to the uncoupled mode. It is therefore the user’s 
responsibility to ensure that the component models coherently define some global parameters 
such as the total run duration, the calendar, etc. If a complete implementation of the MPI2 is 
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4	   	  Extensible Markup Language, http://www.w3.org/XML/ 
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available, the user has to start only the OASIS D&T which then launches all remaining 
component executables; the advantage of the MPI2 approach is that each component keeps its 
own internal communication context unchanged with respect to the standalone mode. If only 
MPI1 is available, the OASIS Driver and the component model executables must be all 
started at once in the job script in a "multiple program multiple data" (MPMD) mode; in this 
case, OASIS needs to recreate a component model communicator that must be used by the 
component model for its own internal parallelisation 

Communication: the OASIS PSMILe library 

The OASIS3 PSMILe prism_put interface (see below) provides a method to send a field into 
the OASIS3 D&T which then can gather the whole coupling field, transform or regrid it, and 
redistribute it to the target component model processes. The OASIS3 D&T can be parallel, 
each process treating a subset of complete coupling fields; this results in a pseudo-
parallelisation of OASIS3 D&T on a field-per-field basis. 

With the OASIS4 PSMILe, the communication is more efficient. In a first step, envelopes of 
the grid partitions residing on each process are exchanged between source and target 
processes and intersections are identified. For each target point falling into an intersection, a 
multigrid algorithm with a refinement factor of two in each direction is then used to perform 
the neighbourhood search, i.e. to identify the source cell containing the projection of the target 
point and its source neighbours. When the source grid is partitioned, the OASIS4 PSMILe 
performs an additional search step called the parallel global search: for the target grid points 
falling near the source partition border, the neighbours are also searched for on adjacent 
partitions. This ensures that the regridding result is independent of the source partitioning. At 
the end of the neighbourhood search, each source process holds different lists, each list 
containing the information about the target points located in the intersection of a target 
process domain with its local domain and about the source neighbour points needed for the 
regridding of these target points. These lists are equally distributed over the D&T processes, 
resulting in an effective parallelisation of the D&T over the lists. During the exchange phase, 
each D&T process receives the grid point field values corresponding to its list(s), calculates 
the regridding weights and applies the weights. The data are sent upon request from the 
respective target process (i.e. when a prism_get is called in the target component code).  The 
OASIS4 D&T therefore acts as a parallel buffer into which the transformations take place. 

Coupling field transformation and regridding 

OASIS3 offers different transformations for 2D coupling fields expressed on grids in the 
Earth spherical coordinate system that are regular in longitude and latitude, stretched, rotated, 
Gaussian reduced, and unstructured. The regridding algorithms available, taken from the 
Spherical Coordinate Remapping and Interpolation Package (SCRIP) library [Jones1999] are 
distance-weighted-nearest-neighbour, bilinear, bicubic, conservative remapping and user-
defined regridding (the weights and addresses are pre-defined by the user in an external file). 
Additional transformations such as time accumulation or averaging, correction with external 
data read from a file, linear combination with other coupling fields, addition or multiplication 
by a scalar and global conservation are also available.  

OASIS4 offers the same regridding options as OASIS3 for 2D coupling fields. In addition, 
OASIS4 supports 3D distance-weighted-nearest-neighbour and trilinear regriddings that are 
3D extensions of the 2D SCRIP algorithms.  The 3D implementations are currently being 
validated. Time accumulation or averaging, addition or multiplication by a scalar, and 
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gathering/scattering (required when the grid definition includes all masked and non masked 
points but when the coupling field itself gathers only non masked points) are also available. 
An important limitation of OASIS4 is that unstructured grids are not yet supported. 

3. How to use the software, community 

To communicate with other component models, a component model needs to call few specific 
OASIS PSMILe routines. The PSMILe API function calls for both OASIS3 and OASIS4 can 
be split into three phases.  The first phase includes calls for the coupling initialisation, the 
definition of the grids (i.e. the grid point and corner longitudes and latitudes), the description 
of the local partition in a global index space, and the coupling field declaration; the second 
phase comprises receiving and sending of the coupling fields (by calling respectively a 
prism_get or a prism_put routine) usually implemented in the model timestepping loop, while 
the third phase terminates the coupling. For both OASIS3 and OASIS4, the sending and 
receiving of data follow the principle of “end-point'' data exchange. The target component of 
a prism_put or the source of a prism_get for each field as well as the exchange frequency is 
defined by the user in the configuration file and the coupling exchanges take place according 
to the user external specifications. The target and the source can be another component or a 
file as the PSMILe library also supports disk I/O based on GFDL mpp_io library 
[Balaji2001]. 

Today, both the widely used OASIS3 coupler and the new fully parallel OASIS4 coupler are 
available. OASIS3 is used today by about 30 different climate modelling groups in Europe, 
Australia, Asia and North America. The current user community of OASIS4 is growing, and 
use of OASIS4 has already shown promising results in different configurations. OASIS4 has 
been used for 3D coupling between atmosphere and atmospheric chemistry models at 
ECMWF, KNMI and Météo-France in the framework of the EU GEMS project and is still 
used in the following EU MACC project. Currently, OASIS4 is used at SMHI for regional 
ocean-atmosphere coupling applied to the Arctic region, at the Bureau of Meteorology (BoM) 
in Australia for regional ocean-atmosphere coupling, and at the Alfred Wegener Institute, 
(Bremerhaven, Germany) for 2D global ocean-atmosphere coupling. Global ocean-
atmosphere coupled models are also being currently set-up with OASIS4 at the MPI-M and at 
CERFACS. 

4. Benefits and limitation 

OASIS3 performances 
OASIS success up to now can be explained by its great flexibility, by its low intrusiveness in 
the component codes, by the active support offered by the development team to the users, and 
the great care taken to constantly integrate the community developments in the official 
version. 
The OASIS3 coupler is certainly limited in parallelism and will eventually become a 
bottleneck in the simulation on massively-parallel platforms. However, thanks to its pseudo-
parallelisation on a field-per-field basis, OASIS3 has been used recently in a few high-
resolution coupled simulations without introducing significant overhead in the simulation 
elapsed time. For example, OASIS3 is used in the high-resolution version of the Hadley 
Centre coupled model to couple the atmospheric Unified Model (UM) with a horizontal 
resolution of 432 x 325 grid points to the ocean NEMO model at a horizontal resolution of ¼ 
degree; the coupling frequency is 3 hours, XXX coupling fields are exchanged, and the 
coupled model is run on an IBM power6 192 cpus for the UM, 88 cpus for NEMO, and 8 
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cpus for OASIS3. In this configuration, the coupling overhead was observed to be less than 
2% in elapsed time. 
Recently, the resolution of EC-Earth was increased for the atmospheric model IFS to T799 
(~25 km) and to the ORCA0.25 configuration (~¼ degree) for NEMO ocean model. 20 
coupling fields were exchanged at a coupling frequency of 3 hours. This was run on the 
Ekman cluster (1268 nodes of 2 quadripro AMD Opteron, i.e. a total of 10144 cores) with 
different numbers of cores for IFS, NEMO and OASIS3. It was observed that OASIS3 elapse 
time of ~6 seconds is non negligible when it runs in mono-processor mode. In this case, the 
coupling induces a significant overhead of ~13% in elapse time with respect to the IFS 
standalone run; this is true even if OASIS3 interpolates the fields when the fastest component 
waits for the slowest as the OASIS3 cost itself is larger than the component imbalance. But 
when the parallelism of OASIS3 increases (going from 1 to 10 processes), OASIS3 elapsed 
time decreases and its cost is nearly “hidden” by the component imbalance. In this case, the 
overhead decreases to less than 3%.  Of course, this way of “hiding” the cost of OASIS3 
works only if there is some imbalance of the components elapsed time which allows OASIS3 
to interpolate the fields when the fastest component waits for the slowest. If the components 
were perfectly load balanced, then the OASIS3 cost, even if lower when OASIS3 is used in 
the pseudo-parallel mode, would be directly added in the coupled model elapse time.  

OASIS4 performances 
The performance of the OASIS4 multi-grid search was analysed in detail by comparing it to 
the OASIS3 sequential search (see [Redler2010]). Even at relatively low resolution (2244 and 
4692 grid points for the atmosphere and the ocean), it was observed that OASIS3 is about two 
times slower than OASIS4. The difference gets bigger with increasing resolution: in fact, the 
time required for the neighbourhood search increases with O(N2) for OASIS3 where as it 
increases only with O(N) for OASIS4. With ~300 000 grid points for the atmosphere and for 
the ocean, the search in OASIS3 is about 170 slower than the search in OASIS4. This clearly 
demonstrates the benefit of the multi-grid neighbourhood search when compared to a classical 
search and the increased general performance of OASIS4 over OASIS3 even in this simple 
non-parallel case. 

Regarding the scalability of OASIS4, some first tests of the PSMILe library and D&T 
scalability were done and are reported in [Redler2010]. Up to 16 cpus, the PSMILe and the 
D&T show a good scalability. These first tests on the PSMILe and the Transformer scalability 
are encouraging and can be used as a proof-of-concept.  Additional tests on much greater 
numbers of processes will need to be carried out before any firm conclusions can be drawn.  

5. Future plans 

In conclusion, one can say that OASIS3 is stable and well debugged, but it is more 
performance limited than OASIS4, which continues to undergo validation, especially in the 
fully parallel cases. Within the framework of funded projects work continues to establish 
comprehensive services around OASIS through a portal offering documentation, user guides, 
tutorial, FAQs, user forum and tips for best practices, and to extend the existing functionality.  
One example of such an initiative is the InfraStructure for the European Network for Earth 
System Modelling (IS-ENES), a 4-year project started in March 2009 that brings about 90 
person-months of funding for OASIS development and user support, and into which a fruitful 
collaboration with the Deutsches Klimarechenzentrum GmbH (DKRZ) is currently taking 
place.  



25 
 

Currently, CERFACS and CNRS are committed to support the development and maintenance 
of the OASIS software. However, CERFACS and CNRS permanent resources devoted to the 
OASIS development are most probably undersized given the large OASIS user community 
and the always evolving complexity of computing platforms used in climate modelling. 
Therefore CERFACS’s current objective is to establish an official Memorandum of 
Understanding between the largest institutions using OASIS into which each partner would 
engage in spending some permanent resources on OASIS. Thanks to this MoU, OASIS 
hopefully will remain for the coming years a great example of successful community 
software.  

Acknowledgements: Part of this work has been funded by the EU FP7 IS-ENES project 
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The GFDL Flexible Modeling System FMS 
by Balaji (Princeton University) 

The GFDL Flexible Modeling System (FMS)  is an  early example of a modeling framework,  
a comprehensive  programming model and toolkit for the construction of coupled climate 
models. The “sandwich” architecture is fairly typical of such frameworks.  User code, that is 
to say a set of routines expressing scientific algorithms, is written following the conventions 
of a standard infrastructure layer that provides useful and common technical services such as 
I/O, exception handling,  and  most  importantly,  operations on distributed grids and  fields. 
Such standard high level expressions  of parallelism, independent of the underlying  hardware 
architecture, and uniformly expressed  on all platforms, are an area  of keen research  interest.  
Balaji and Numrich  (2005) provide an overview of the field 

The  climate system is composed  of hierarchies  of interacting physical  components,  and  it  
is natural to think  of constructing  models  of such  systems out of interacting code 
components. Component-based design of model codes is based  on defining standards for 
what a component interface looks like: a community of scientists and developers that agree to 
adhere  to a given standard component  interface  (SCI)  set can then distribute development 
amongst themselves, confident that their own independently developed components will 
interact correctly with others within the same modeling framework.  

The  FMS  coupler  is a domain-specific  SCI:  it  is written  quite  narrowly to support ESMs. 
It is designed to address the question of how different components of the Earth system, say 
atmosphere and ocean, are discretized. Earlier generations  of climate  models  used  the same  
discretization,  or simple  integer refinement, for all components: thus, data exchange between 
components was a relatively simple point-to-point exchange.  But any limitation on resolution 
of one component necessarily imposed itself on the other as well. Now it is increasingly  
common  for each  model  component to make  independent discretization choices appropriate 
to the particular physical component being modeled.  In this  case, how is, say a sea surface  
temperature  from an ocean model made available  to an atmosphere model that will use it as 
a boundary condition on a different  spatial  grid ? 

This  is the regridding  problem, subject to the following constraints when specialized to Earth 
system models: 

• Quantities  must  capable  of being globally conserved : if there  is a flux of a quantity 
across an interface, it must be passed conservatively from one component to the other. This 
consideration is less stringent when modeling weather  or short-term  (intraseasonal  to 
interannual)  climate  variability, but very important in models of secular climate change, 
where integration times can be O(106 ) − O(108 ) timesteps. 

• The  numerics  of the flux exchange  must  be stable,  so that no limitation on the 
individual  component timestep is imposed  by  the boundary  flux computation itself. 

• There must be no restrictions on the discretization of a component model. In  
particular, resolution or alignment of coordinate lines cannot be  externally imposed.  This  
also implies a requirement for higher-order  interpolation  schemes,  as low-order  schemes 
work poorly  between  grids  with a highly  skewed resolution  ratio. Higher-order  schemes 
may  require  that not only fluxes, but their higher-order  spatial derivatives as well, be made 
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available  to regridding  algorithms. The independent discretization requirement extends to the 
time axis: component models may  have  independent timesteps. (We  do have  a current 
restriction that a coupling timestep be an integral multiple of any individual model timestep,  
and  thus,  timesteps  of exchanging  components  may not be co-prime). 

• The  exchange  must  take  place  in a manner  consistent  with  all physical processes 
occurring near the component surface. This requirement is highlighted because of the unique 
physical processes invoked near the planetary surface: in the atmospheric and oceanic 
boundary layers, as well as in sea ice and the land surface, both biosphere  and hydrology. 

• Finally,  we require  computational efficiency on parallel  hardware:  a solution that is 
not rate-limiting at the scalability limits of individual  model components. Components may  
be scheduled  serially  or concurrently between coupling events. 

The specificity of the problem that the FMS coupler is designed to address distinguishes it 
from more general component frameworks such as ESMF. Unlike an ESMF  application, 
which can be recursively  constituted out of components performing any function at all, the 
FMS coupler recognizes only a few components that may be on independent grids: an 
atmosphere, an ocean surface,  a land surface, and an ocean. The ocean surface also represents 
the sea ice. Any other components inherit a grid from these, e.g atmospheric physics and  
chemistry from the atmosphere; terrestrial biosphere,  river  and land ice components from the 
land surface; marine  biogeochemistry from the ocean. 

The  SCI  for FMS  is therefore  not  phrased  in terms  of a generic  “component” as in 
ESMF.  Instead, there are interfaces or “slots” for each of the specific components listed 
above. For instance, an ocean model would encode its  state in terms  of specific data 
structures  to hold  the fields it  exchanges with  other  components, called ocean boundary 
type and  ocean data type. It must provide calls named ocean model init and ocean model end 
for initialization and  termination, and  a routine called  update ocean model that steps the 
model forward for one coupling timestep. These calls all have a specific syntax. Each slot also 
includes the possibility of a null or “stub” component if that component is not needed,  as well 
as a “data” component (where for instance  the ocean  is replaced  by  a  dataset). In  addition  
we provide  a data override capability for fine-tuned sensitivity studies, where individual 
fields in the model can be overridden  by a dataset. 

Fluxes at the surface often need to be treated using an implicit timestep. Vertical diffusion in 
an atmospheric model is generally treated implicitly, and stability  is enhanced  by  computing  
the flux at the surface  implicitly  along with the diffusive fluxes in the interior. 
Simultaneously we must allow for the possibility that the surface layers in the land or sea ice 
have vanishingly  small heat capacity. This feature is key in the design of the FMS coupler. 
This  is a tridiagonal matrix inversion  which can be solved relatively efficiently using  an up-
down  sweep. The  problem  is that some of the layers are the atmosphere and  others are in 
the land.  Moreover, if the components are on independent grids, the key flux computation at 
the surface,  to which  the whole  calculation  is exquisitely  sensitive,  is a  physical process  
(e.g  Monin  and  Obukhov,  1954) that must be  modeled  on the finest possible grid without 
averaging. Thus, the exchange grid, on which this computation is performed,  emerges as an 
independent model component for modeling the surface boundary layer. 
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The general procedure  for solving vertical diffusion is thus split into separate up  and  
down  steps.  Vertically  diffused  quantities  are  partially  solved in the atmosphere 
(known in FMS as the “atmosphere down” step) and then handed off to the exchange 
grid, where fluxes are computed. The land or ocean surface models recover the values 
from the exchange grid and continue the diffusion calculation and  return values  to the 
exchange  grid. The  computation is then  completed  in the up-sweep  of the atmosphere.  
Note  that though  we are computing  vertical diffusion,  some spurious  horizontal 
mixing  can occur as the result of regridding. The exchange grid is described  in detail in 
Balaji et al (2006). 

Data assimilation  for  coupled  models  is  an  exciting  emergent  field  of research.  
Data assimilation includes  a class of methods known as ensemble filters  (Kalnay, 2002), 
which involve sampling  the error space of observations by running  a model ensemble: 
multiple copies of a model perturbed to span that space. 

The FMS coupled modeling system includes a sophisticated data assimilation  system,  
the parallel  ensemble  adjustment  Kalman  filter  (Zhang  et al, 2005).  The  parallel  
filter  consists  of running   each  ensemble  member  as  a concurrent component on an 
independent set of processors,  and  the slot replaced by the filter. 

The ensemble filter has been used on 24-member ensembles of CM2.1 with no loss of 
performance  versus ensemble size. A recent development has been the construction of a  
coupled  data assimilation system (CDAS)  where  ensemble methods simultaneously 
assimilate both atmosphere and  ocean data.). The CDAS has been the basis for a set of 
pioneering studies showing the influence of initial conditions on simulations of recent 
climate history on decadal  timescales. 

In summary,  this section has  presented a review of the key features of how coupling  is 
performed  in the GFDL  Flexible  Modeling  System. A standard coupling interface with 
slots for atmosphere, land surface, ocean surface, and ocean components is coupled along 
with a surface boundary layer component on  an  exchange  grid  (Balaji et al,  2006).  
Components live within a  single executable,  but can  be scheduled  serially  or 
concurrently  with  others.  The code has been shown to be scalable to O(1000) 
processors,  with fast surface processes coupling every atmospheric timestep (typically � 
15 min) and slow processes coupling every ocean timestep (typically  1 hour).  Coupling  
is conservative to up to second-order  accuracy. The  FMS  superstructure  also includes  
support  for data assimilation  using ensemble filter  methods. The  coupled data 
assimilation system has been run on IPCC-class  models assimilating both atmosphere 
and ocean fields. An ensemble size of up to 24 has been used with no significant loss of 
scaling. 

At the moment of writing, FMS and its coupler have been in active use for over a decade. 
Its feature list and its performance  still place it at the forefront of the field. 
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The Bespoke Framework Generator BFG 

by Rupert Ford (U. Manchester) 

1. Design goals and strategy 

BFG was originally developed as a potential solution to an analysis of the Met Office's 
coupling requirements [REQS]. These requirements included high performance (in-part 
to support both the Climate and NWP communities), flexibility (in terms of coupling 
models together and integrating external models) and future-proofing (to avoid major 
changes to the scientific software in the future). BFG was subsequently extended to 
support the requirements of the GENIE community model [BFG2] and the CIAS 
Integrated Assessment System [CIAS]. 

Rather than being a coupler in its own right, BFG is designed to allow the user to choose 
the coupling technology, i.e. a specific coupler and/or communications infrastructure, 
they would like to use for a coupled model run. Given the required information, in the 
form of metadata, BFG generates bespoke wrapper code which can be compiled and 
linked with the users science code and the coupling technology of choice. Regardless of 
which coupling technology the user chooses for their coupled model run, the scientific 
code remains unchanged. BFG can, therefore, be thought of as a Meta-coupler. 
By separating the implementation of the coupler from the science code the user is given 
an additional layer of flexibility. This flexibility can help in terms of portability, 
performance, maintenance and future-proofing of the code. 

In BFG code developers are encouraged to input and output coupling data in their internal 
storage format. A consequence of this philosophy is that data may need to be transformed 
when being transferred between models (one important class being re-gridding in ESM). 
In BFG, transformation code is specified and treated in the same way as model code. This 
approach allows transformations to be mapped to the underlying resources in the most 
appropriate manner. In the case that the target framework supports intrinsic 
transformations (such as OASIS4) then these transformations can be indicated as being 
intrinsic in the BFG metadata and BFG will generate appropriate code (or configuration 
files) to use these. 
BFG concepts have been purposely designed to be relatively generic. A notable example 
is the model interface where one is able to specify models written in a variety of 
languages. A related design philosophy is to avoid requiring any domain specific features 
and to treat them as optional additions (for example grids in ESM). Thus BFG should be 
applicable to other domains and also between domains. Early indications are that this is 
indeed the case [CIAS][MD]. 
2. Implementation (regarding process management, communication/data exchange, 
regridding) 
The current version of BFG (BFG2) supports models written in Fortran90. Each model 
must be written as a module containing one or more subroutines. BFG uses the associated 
metadata to generate the required calling (control) code. The coupled model behaviour is 
specified by a schedule described in the metadata which supports arbitrary nested loops. 
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As models are written as modules, BFG2 is also able to map models within the coupled 
model to a single executable, multiple executables or any combination thereof. 

BFG2 supports data being passed to and from module subroutines via arguments and/or 
in-place put/get calls. The former approach is similar to that used by ESMF and CPL7 
and the latter to OASIS3, OASIS4 and TDT. Each coupling connection can be initialised 
(primed) in a variety of ways including from a model or a file. 

In the current implementation, data can be passed between models in the following ways: 
• Argument passing 
• MPI 
• OASIS4 calls.  

The OASIS4 implementation also supports the specification of grids using an XML 
representation of the Gridspec [REF] and the use of intrinsic OASIS4 transformations. 

3. How to use the software, community 
To use BFG2 you must make your model code conform to the coding rules mentioned 
earlier and describe your models interface in (definition) metadata. You then specify how 
the models (and transformations) are connected together scientifically (the composition) 
and finally you specify how to map the models onto the available hardware and software 
resources (the deployment). BFG2 takes the metadata descriptions and translates these 
descriptions to appropriate (bespoke) code using xsl transformations with python 
wrappers. 

BFG has thus far been primarily a prototyping tool. Currently its one use is within CIAS, 
a Community Integrated Assessment System [CIAS] where it is used to couple over 20 
different model configurations. However, BFG2 is maturing into a tool that could be used 
more widely. 

4. Benefits and limitations 
The BFG approach has the primary benefit of combining the isolation of the science from 
the infrastructure and the implementation of a code generation system to provide 
flexibility in model composition and deployment onto the available hardware and 
software resources. 
One key feature of BFG is that it is able to achieve the same performance as hand written 
code [BFG2]. The API and the high performance offered by BFG opens up the 
opportunity for much finer grain coupling than is typically performed at the moment. 

The current BFG2 implementation has a number of limitations:  
• One needs to regenerate the framework code whenever any part of the coupling 

metadata changes 
• The xslt generation software is complex and difficult to manage 
• BFG2 does not currently support data partition information which means it can 

not support parallel models which are the norm in ESM 
• BFG2 only supports one target in a coupled model (with the notable exception of 

argument passing) so it is not possible to pass data using ESMF and OASIS4 (for 
example) in the same coupled model. 
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5. Future plans 
We are currently working on extending BFG2 to support models that have been written in 
a less modular way. In particular, codes which are main programs, codes with internal 
control and codes where the source code is not available and must, therefore, be treated 
as a black box. We are also working on extending BFG2 to support a number of different 
languages in order to satisfy the requirements of the IAM community. As an example, 
economics models are typically written in GAMS. We are planning to add support for 
parallel partitions and subsequently parallel models. For the MPI target we will use MCT 
[REF] for the resultant "mxn" communication that will occur. We are also planning to 
extend BFG2 to support ESMF, CPL7 and TDT as targets. 

Finally, in the slightly longer term, we are interested in the feasibility of using BFG2 to 
couple models that are coded to conform to other frameworks by generating appropriate 
adaptor code. 
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The OpenMI interface for flexible and dynamic coupling	  
by Stef Hummel and Bert Jagers (Deltares) 

Introduction 
Integrated analysis often requires integrated modeling. This can be done by developing 
all-inclusive models, but it is preferable to be able to flexibly combine individual models 
or model components, that address specific domains, at run time. This can be realized by 
implementing models as shared libraries with a common standardized interface. In the 
water sector, in a series of EU-projects that focused on river basin management, the Open 
Modeling Interface (OpenMI, see [1] and [2]) has been developed in order to link 
together model components from various origins. OpenMI provides a standard model 
interface, a reference implementation of that standard, and utilities to support existing 
models in adhering to that standard. The OpenMI standard is published by the OpenMI 
Association; the reference implementation and the utilities (the so called SDK, Software 
Development Kit) are provided as an open source project by the the OATC, OpenMI 
Association Technical Committee (see [3] and [4]). 
The first version of the Open Modeling Interface (OpenMI) was launched at the end of 
2005. Since that time, the user and development community has grown steadily, and 
various well known models have become compliant. Because of limitations of this first 
version, some of the models did not follow the OpenMI standard interfaces exactly, but 
used slight deviations to achieve their goal in a similar style. Improvements were 
necessary to become a general interface standard that would not only cover water related 
applications, but also other domains. Over the past few years, starting in 2007, a core 
group of six institutes has worked on an upgrade of the OpenMI towards version 2.0. 
Based on a limited number of use cases as general guidance for improvement, a long list 
of improvements was composed. These changes have made OpenMI suitable for a large 
range of applications, from non-time dependent Geographical Information Systems (GIS) 
towards e.g. master-slave controlled modeling frameworks. The resulting version 2.0 of 
the OpenMI standard (see [5] and [6]) has been released in December 2010. 

OpenMI concepts 

OpenMI provides standardized interfaces to define, describe and transfer data between 
software components that run simultaneously, thus supporting systems where feedback 
between the modeled processes is necessary in order to achieve physically sound results. 
A software component that implements OpenMI standard is called a Linkable 
Component. OpenMI allows the linking of models with different spatial and temporal 
representations: for example, linking river models and groundwater models, where the 
river model typically uses a one-dimensional grid and a short time step and the 
groundwater model uses a two- or three-dimensional grid and a longer time step. 

The OpenMI standard consists of a set of interface classes, specified in both Java and C#, 
that define the behavior of a model component, and that define which quantities can be 
exchanged by that component, on which locations and in what time frame. 

What, where, when	  
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The run time data exchange between model components is done by means of a 
GetValues(…) call,  where the argument of this call specifies: 

• What is exchanged? This is defined by the IQuantity and the IQuality interfaces 
below. 

• Where is it exchanged? The location is specified by the so called IElementSet, a 
set of ID-based or Geo-referenced locations (see table below). 

• When, i.e. at what times is the data needed? This is expressed by the ITimeSet, a 
list of time stamps or time spans. 

 
A quantity is specified by 

• Caption (“Runoff”) 
• Description (optional explanatory 

description) 
• Value Type (double, integer, 

etc.) 
• Unit: 

• Caption ( “CFS” ) 
• Description (“Cubic feet 

per second“) 
• ConversionFactorToSI 

(0.0283168439 ) 
• OffsetToSI ( 0 ) 
• Dimension (e.g.  L3 T-1) 

A quality is defined by its: 

• Caption (“Soil Type”) 
• Description (optional explanatory 

description) 
• Categories: 

• Caption (“sand 1”) 
• Description (“coarse 

sand“) 
• IsOrdered 

 

	  

	  

For the definition of locations, the ElementSet, various types are available: 

ElementType Description 

IDBased ID-based (string comparison). 

Point geo-referenced point in the horizontal (XY)-plane or in in the 3-
dimensional (XYZ)-space. 

PolyLine geo-referenced polyline connecting at least two vertices in the 
horizontal (XY)-plane or in the 3-dimensional (XYZ)-space. The 
begin- and end-vertex indicate the direction of any fluxes. Open entity 
with begin- and end-vertex not being identical. 

Polygon geo-referenced polygons in the horizontal (XY)-plane or in the 3-
dimensional (XYZ)-space. Vertices defined anti-clockwise. Closed 
entity with one face, begin- and end-vertex being identical. 



	  

Linking components 
A component specifies its data exchange capabilities by defining input items and output 
items. After initialization, the lists of input and output items supported by the Linkable 
Component can be queried via the OpenMI interface. Each input item and output item 
specifies its quantity or quality, its element set and its time set. 
The actual data exchange between components is established by defining provider/consumer 
relationships between output items and input items (see Figure 1). The GetValues() call 
mentioned above is performed on the output items. 
 

 

Figure 1: Linking output and input items 

If the quantity, the ElementSet or the TimeSet of a certain output does not fit the way the 
input item requires it, the output can be adapted by adding an AdaptedOutput to the output. 
As the name indicates, an adapted output in its turn is just an output again, so subsequent 
adapted output items can be added to the initially created adapted output. 

Figure 2 shows an example of some sequences of adapted outputs. It may be clear that the 
adapted output approach offers great flexibility in defining the steps that have to be taken to 
transform that data from, for example, Output-1 to Input-2 and Input-a. 
 

 

Figure 2: Flexibility in data transformations by means of Adapted Outputs 
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The first release of OpenMI included only the GetValues() call to transfer data. Although in 
OpenMI 2.0 a SetValues() call has been added to support e.g. parameter sensitivity studies 
and data assimilation, the GetValues() call remains the main work horse for OpenMI. It is 
closely related to the time progress and synchronization of the overall configuration of 
Linkable Components. 

Migrating models 
From the very start the OpenMI has been designed in such a way that it supports the easy 
migration of existing modeling systems. Generally speaking, a model in any programming 
language is made OpenMI compliant by re-organizing its code in such a way that it has a 
separate initialization, computation and finalization routine, and can accept and provide input 
data and results, after which – based on the current reference implementations – a Java and/or 
C# wrapper is put around it (see Figure 3). The OpenMI SDK offers utilities to facilitate the 
development of such a wrapper. 
 

 
 

Figure 3: Wrapping native (e.g. Fortran) code in an OpenMI wrapper 
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OOPS - An Object Oriented Framework for Coupling Data Assimilation Algorithms to 
Models 

by Mike Fisher (ECMWF)  

Data assimilation involves a close coupling between the assimilation algorithm and a 
numerical model. Observation operators are required to determine model-equivalents of 
observations, and the assimilation algorithm must integrate the assimilating model (and 
possibly its tangent linear and adjoint) with specific initial and boundary conditions. 

Despite this close coupling with the model, the high-level mathematical description of data 
assimilation algorithms is essentially model-independent. Moreover, these algorithms can 
typically be described in terms of a few operators and vectors. 
In the IFS/Arpege code, the close connection between model and data assimilation has lead to 
a single monolithic code in which the boundaries between model and assimilation algorithm 
have become blurred, and in which it difficult to identify the vectors and operators of the 
mathematical description of the algorithm. This makes it difficult to develop new algorithms, 
and does not allow the assimilation code to be used with different models. 

The Object Oriented Prediction System (OOPS) attempts to address this problem by clearly 
identifying the various operators and vectors required by the assimilation algorithm, and 
providing clean interfaces between these entities and the model. Since these operators and 
vectors are explicitly available, it is straightforward to re-combine them into new algorithms. 

The data assimilation algorithm is expressed in a way that is independent of any specific 
model. This allows, for example, algorithms to be developed with simple models and then 
transferred directly, without any re-coding, to more complex models. 



	  

	  

C-Coupler: A coupler for Earth System Modeling 

by Xiaoge Wang[1], Li Liu[1], Guangwen Yang[1,2] 

[1] Department of Computer Science and Technology 
[2] Center for Earth System Science 
Tsinghua University, Beijing, China, 100084 
Abstract: This presentation will introduce the project C-Coupler. It will include an overview 
of the project, the design goals and technical aspects of C-Coupler. 
Project C-Coupler is funded by National High Technology Research and Development 
Program of China (863 program) started this year for 3 years. Its goal is to support the earth 
system modeling research. In addition to the functions of a typical coupler, such as data 
transfer and re-grid between grid components, flux computation, and driver of the system, C-
Coupler needs to support ensemble modeling and embedded regional modeling, and to run 
efficiently on large scale parallel computers. 
The earth system modeling research community in China currently uses mainly NCAR cpl5 
and cpl6 and OASIS3 and OASIS4 for coupling different component models. The demand for 
a coupler with more functions and more flexibility and user friendliness is getting higher. 

In design of C-Coupler, there are some considerations: 
(1) The effort of transform from current couplers to the new one should be minimized. 
(2) The advantages of current in-use couplers should be preserved. 
(3) The software technologies used in the new coupler should support component-based 
programming and software configuration management; 
(4) The new features include: more configurable (using GUI and script ), Interactive 
ensemble, 3D coupling, regional coupling. 
(5) High performance in communication, system level load balancing and parallel I/O 
operations. 

The architecture design of C-Couple is presented in Figure 1 and Figure 2. As shown in 
Figure 1, the coupled earth system model (ESM) is consisted of three parts: on the top, there 
are the model components, such as atmosphere model, ocean model, etc.; on the bottom, there 
are function components and data components; all the components connected to the center 
part, C-Coupler, via predefined interfaces. C-Coupler is consisted of interfaces to the 
components, configure files and coupling driver code. The configure files and part of the 
driver code are generated by configuration system, which is shown in details in Figure 2. As 
shown in Figure 2, configuration system is used by component builders, ESM builders and 
users to configure the model components, function components, coupling cases and ESM 
cases through GUI or script language. The configuration system would access the components 
repository and manage the configurations. With the capability of configuration and code 
generation, we expect C-Coupler to be more flexible and user friendly. The coupling function 
of C-Coupler is also expected to be more extensible. 



	  

 

Figure 1: Overview of C-Coupler and coupled earth system model. 

 

 

Figure 2: Overview of C-Coupler configuration system 



	  

 

Some details of configuration are presented. They are model configuration, coupling 
algorithm configuration, coupler configuration and ESM case configuration. With the enough 
configuration information collected during the configuration stage, the system could generate 
the sequence of coupling algorithm objects. This sequence would be used to in the C-Coupler 
driver to control the model coupling. The driver uses time-driven policy to drive the 
components. It uses a global timer, model components’ time steps, coupling frequencies to 
manage the execution of components. 
The implementation of first version of C-Coupler is planed to complete by early next year. It 
will implement some basic coupling functions that will allow the current version of model 
FGOALS to run under C-Coupler. Some more advanced functions, such the support for 
interactive ensemble, 3D remapping, embedded regional model coupling, global load 
balancing etc., would be implemented in the late version. The evaluation of C-Coupler will 
follow the implementation step. It will cover the testing and evaluation on the system integrity 
and robustness. After the first version, more efforts will be put on the system scalability, 
portability and adaptability. 



	  

 
The Model for Prediction Across Scales: meshes and software framework 

Michael Duda+, Todd Ringler*, and William Skamarock+ 
+National Center for Atmospheric Research5 
*Los Alamos National Laboratories 

1. Introduction 

The Model for Prediction Across Scales (MPAS) is a collaborative effort between LANL 
(COSIM) and NCAR (MMM) to develop climate, regional climate, and numerical weather 
prediction components within a common framework. Currently, a nonhydrostatic atmosphere 
model and an ocean model are under development in MPAS, and there are plans to develop an 
ice sheet model in the near future. Although the physical domains over which each of these 
models simulate are quite distinct, all of the models have in common their use of centroidal 
Voronoi tessellations (CVT) with a C-grid staggering, i.e., with the prognosed velocity field 
defined in terms of velocities normal to grid cell faces, as their horizontal meshes. The 
consequent need for software infrastructure to support finite volume-type modeling on CVT 
meshes has motivated the development of a common software framework for MPAS. Of 
particular interest to the scientific goals of MPAS is the ability of CVT meshes to provide 
smooth mesh refinement according to a user-defined density function, though with this 
flexibility come challenges for software infrastructure, and, most likely, for model couplers as 
well. In this presentation, we first describe the construction and use of CVTs in MPAS, and 
we then outline the MPAS software architecture, pointing out how we anticipate interacting 
with coupling packages. 

2. CVT meshes in MPAS 
As their name implies, centroidal Voronoi tessellations are tessellations of a domain where 
each of the cells is a Voronoi region for some generating point; when the generating points 
are also the mass centroids of the Voronoi regions with respect to a specified density function, 
the Voronoi tessellation is a centroidal Voronoi tessellation. A detailed review of CVTs is 
given in Ju et al. (2010). It is precisely the flexibility to specify the density function that 
enables MPAS meshes to possess smoothly-changing resolution, and the centroidal 
requirement of CVTs leads to meshes — both uniform and variable-resolution — of high 
quality. Figure 1a provides an illustration of an SCVT6 mesh with higher resolution targeted 
over a region of the Northern Hemisphere; it is worth noting that the mesh is unstructured, 
since the cells are not constrained to have a specified number of sides. 
For any CVT mesh, the dual mesh, or Delaunay triangulation, provides a connectivity graph 
of the cells of the mesh, and by applying existing graph partitioning algorithms to the 
connectivity graph, we arrive at a partition of the cells among processors. The collection of cells 
in a partition is referred to as a block, and each block is assigned to a parallel task; the parallel 
decomposition of an SCVT into 64 blocks is illustrated in Figure 1b. In the MPAS architecture, blocks 
represent the basic level of mesh decomposition. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5	  NCAR is sponsored by the National Science Foundation	  

6	  An SCVT is is a spherical centroidal Voronoi tessellation, where the generating points are 
constrained to lie on the surface of a sphere 
	  



	  

 

 

	  

	  

 Figure 1: (a) An example of an SCVT with refinement targeted over a region in the Northern 
Hemisphere. (b) A parallel decomposition of the SCVT into 64 bocks of cells. 

	  

3. The MPAS software architecture 

At the coarsest level, the MPAS architecture contains three main parts: a driver layer, a model 
core, and software infrastructure. Figure 2 illustrates the connections between components of 
the MPAS architecture. As in the figure, the driver layer is divided into two distinct parts. The 
top-level driver essentially calls init, run, and finalize routines, which are implemented in the 
sub-driver. In turn, the sub-driver interacts with both the model core and the infrastructure in 
the course of performing work appropriate to the init, run, and finalize routines. The rationale 
behind the division of the driver layer into a top-level driver and a sub-driver is heavily 
influenced by the desire to run MPAS models as components of larger system models. The 
top-level driver may be removed, and its role fulfilled by a coupler or a component driver in 
another Earth system model. The routines implemented by the sub-driver may need to be 
augmented, depending on the requirements of the driver, though the sub-driver should remain 
independent of any particular MPAS core. With this split between top-level driver and sub-
driver, as much driver-level code can be shared between cores as possible, while the amount 
of code that needs to be replaced by another high-level driver layer is minimized. 

TheMPAS core, which lies between the driver and infrastructure, contains all computational 
work that is specific to a particular model. This work can obviously include that of a 
dynamical core and physics parameterizations; however, it can also be envisioned as the work 
of creating initial conditions or of postprocessing simulation output, for example. In this way, 



	  

most of the MPAS data flow — from the generation of initial conditions, to model simulation, 
to post-processing — can reuse the MPAS software infrastructure, gaining access to 
parallelism, I/O, and fundamental data types. 

The infrastructure part of the MPAS architecture is roughly divided into four parts: definitions 
of derived types, input and output, parallelism, and operators. A domain type encapsulates the 
complete computational state for an MPAS task, including information for distributed-
memory parallelism (principally, anMPI communicator), as well as the data to be operated 
upon by the task. The data for a task is comprised of one or more blocks, with each block 
constituting the fields defined on the partitions of the mesh assigned to the task plus 
information about which grid cells of the blocks need to be communicated. 
The operators in the MPAS architecture represent, e.g., differential operators for CVT 
meshes, interpolation routines, advection operators, and other code that can be re-used by 
different MPAS cores. In order to generate customized infrastructure and other code that 
would ordinarily require tedious work from the developer of a core, MPAS has adopted a 
computer-aided software engineering (CASE) tool called the Registry, which is modeled on a 
tool by the same name in the Weather Research and Forecasting model (Michalakes et al. 
(2004) ). At compile time, the Registry program is first built; then, the Registry parses a text 
file — called a registry file — specific to each MPAS core, and, based on the contents of the 
registry file, generates Fortran code for core-specific data types, data allocation and 
deallocation calls, and I/O calls. 
	  

	  

 Figure 2: The high-levelMPAS architecture with its three main components: the driver layer, 
a model core, and	  model infrastructure; the Registry is a CASE tool used to generate 
customized DDTs as well as code that would	  be otherwise tedious to write and maintain.	  

 

4. Coupling in MPAS 

With the MPAS software in a relatively immature state — the current working framework is still 
considereda first prototype, in fact — we have attempted to maintain architectural flexibility so that 



	  

MPAS models can be coupled using the largest possible range of coupling packages. One method for 
coupling MPAS models might involve wrapping the MPAS model core and its supporting 
infrastructure code into a component; coupled fields would be exchanged through import and export 
states of components, and the control of MPAS execution would be delegated to a higher-level coupler 
or coupledsystem driver; this approach is facilitated by, e.g., the Earth System Modeling Framework. 
To support coupling in this manner, we envision replacing the top-level driver in MPAS by an external 
coupler or driver, and augmenting the implementation of the MPAS sub-driver with routines for 
importing and exporting coupled fields. The adaption of the MPAS driver layer to this approach is 
shown in Figure 3a. 

Another approach to coupling might involve running MPAS as an independent executable, with new 
calls to send and receive coupled field placed at appropriate points in the MPAS code. If coupled 
fields are exchanged at most once per MPAS time step, a flexible implementation of the MPAS I/O 
subsystem to handle the sending and receiving of coupled fields in the same manner as the input and 
output of fields may be feasible; this approach is illustrated in Figure 3b. Of course, other paradigms 
for model coupling also exist, and these will need to be considered as we continue to evaluate the 
design of the MPAS software. 

 

	  Figure 3: (a) Coupling with MPAS as a component may be accomplished by replacing the 
top-level driver with a coupler or driver from a larger Earth-system model, and implementing 
additional routines in the sub-driver. (b) Coupling via sends and receives of fields could be 
accomplished by implementing these calls as I/O. 

5. Conclusions 

Given that all MPAS models share the same CVT mesh technology, the development of a 
common software framework to support modeling on CVT meshes is a logical step. From a coupling 
perspective, this common framework implies that, if the software challenges of coupling one of the 
MPAS models can be worked out, then coupling any of the other MPAS models comes at virtually no 
additional cost, at least from a technical standpoint; we recognize that coupling each model comes 
with its own scientific issues. The flexibility of CVT meshes poses challenges for theMPAS software 
infrastructure, and any model coupler used by MPAS must also support horizontally unstructured 
meshes. To the coupling community, MPAS may present opportunities to test couplers in areas such 
as re-gridding, since the meshes for MPAS models could be either configured to have coincident cells 
or completely independent meshes at different resolutions. 
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A Feature Model of Coupling Technologies for Earth System Models 
by Rocky Dunlap, Spencer Rugaber, Leo Mark (College of Computing, Georgia Institute of 
Technology) 
Coupling is essential for implementing multi-physics models made up of two or more 
interacting computer simulations. A quintessential example of such coupled models is an 
Earth System Model (ESM), which involves several interacting components simulating the 
Earth’s atmosphere, oceans, land, and sea ice systems. The software components that link 
together and mediate interactions between these models are called couplers. Couplers are 
well-known abstractions in the geophysical and other scientific communities, although their 
implementations differ vastly. With respect to ESMs, no standardized reference architecture 
has emerged. Instead, couplers are designed to address particular modeling situations. The 
design space of couplers is constrained by properties of the existing models, such as software 
architecture, dependencies on third party libraries, numerical and scientific characteristics, as 
well as the nature of the target computational environment. 
Because coupling numerical modeling components is a common need, a number of 
technologies have emerged in the form of reusable software assets to facilitate building 
coupled scientific applications.  Developing couplers is difficult requiring expertise in 
geoscience, numerical methods, and programming for high performance environments.  
Therefore, we seek to support geoscience communities building coupled models through 
generative reuse.  Specifically, our approach is based on Generative Programming, a software 
engineering method for automatically generating members of software families by assembling 
reusable components into final products based on a declarative requirements specification. 
Couplers can be seen as members of a family of modules with similar requirements (e.g., they 
coordinate data communication among models, transform and interpolate field data based on 
the numerical properties of the constituent models, and manage use of parallel computing 
resources). 
A prerequisite to creating couplers generatively is the need to understand the space (domain) 
of possible couplers. What features do couplers require? What features are common across 
couplers and what features vary? How should those features be implemented to address the 
structure of existing modeling components? A key step in generative programming is feature 
analysis in which similarities and variations among members of a family of systems are made 
explicit. Feature analysis determines a multi-dimensional design space for describing a family 
of applications. The output is a feature model that identifies a concise and descriptive set of 
common and variable properties of domain concepts. The feature model represents the 
intention of a software family and can be used to infer the set of possible family instances, 
called the extension.  Once a feature model has been produced, elements can be selected to 
produce a configuration, describing a desired family member. An automated generator can 
then be used to produce the actual code for that member. 
One way to view a domain is as a set of related software applications. Taking this view, a 
feature analysis of couplers involves studying existing software systems used for coupling 
ESMs. The ESM community has already developed reusable software assets in the form of 
coupling libraries and frameworks, and we have conducted a feature analysis of these existing 
software assets in support of a generative programming tool we are building. While no two 
systems are identical, our analysis has revealed significant overlap in the features supported 
by these coupling technologies. However, there are also significant variations in what features 



	  

are supported and how the features are implemented. A feature model of couplers makes these 
similarities and differences explicit. 
Our work is similar to the domain analyses done by the Earth System Curator  and Metafor  
projects, but we focus specifically on couplers and coupling technologies for ESMs. Our 
starting point is existing couplers and coupling technologies, which gives credibility to the 
analysis and ensures that the results are a true reflection of state-of-the-practice models. 
Feature analysis allows us to uncover the breadth of features supported by coupling 
technologies while leaving room to go deeply into one particular feature when desired. 
Features are abstract, supporting the specification of relevant aspects of coupling 
technologies, without being tied to specific programming constructs or architectural 
structures. Features may be functional or non-functional in nature - that is, we can specify not 
only what kinds of operations are supported, but how they are accomplished (e.g., features 
related to performance and security). The same feature may manifest itself quite differently 
across the range of coupling frameworks. Therefore, we can specify that a feature exists 
without saying too much about how it is implemented. 

Coupling Technologies Analyzed 
The coupling technologies we analyzed are currently used in Earth System Models or are 
under active development. Our goal is to paint a relevant picture of the state of the practice for 
ESM couplers. Table 1 lists the coupling technologies we considered. It is important to note 
that the studied technologies each have a different scope of use. As such, this is not an apples-
to-apples comparison but is intended to reveal the set of features that are relevant when 
writing couplers for ESMs and, ultimately, for generating them. 

	  

Acronym Full Name Reference Latest Released Version 

BFG2 Bespoke Framework Generator  bfg2-beta 

ESMF Earth System Modeling Framework  ESMF_4_0_0rp2 

FMS Flexible Modeling System  Riga (internal) 

MCT Model Coupling Toolkit  2.6.0 

OASIS/PSMILe Ocean Atmosphere Sea Ice Soil / 
PRISM System Model Interface 
Library 

 OASIS4 

TDT Typed Data Transfer  12 June 2008 

Table 1 - Analyzed Coupling Technologies 

The feature analysis we conducted is based on information found in technical documentation 
that accompanies the coupling technologies (e.g., programming guides, user manuals) as well 
as articles that describe the technologies and their uses. The initial feature analysis was 
conducted in a bottom-up fashion by gathering a large list of features that couplers support. 
The resulting feature diagram contained over one hundred features at the leaf level. We dealt 
with this complexity by abstracting related sub-features into common higher-level features, 
sometimes producing a hierarchy several levels deep. To deal with uncertainty in the way 
certain features are represented, we created an issues list describing alternative feature 



	  

representations.  In working through the issues list, the feature model has undergone several 
refactorings.  During the feature modeling process, we have defined a vocabulary that 
describes the space of features supported by couplers for ESMs. When alternative terms were 
found in the literature, we either chose one of the terms or selected a different term which we 
felt encompassed the semantics of the set of alternatives.  In an attempt to appeal to a broad 
audience of researchers and scientific modelers interested in coupling technologies, we have 
tried to avoid jargon terms that are only well-known within highly specialized communities.  

The full feature model is available in a technical report. 
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Data assimilation and coupling 
by Andrea Piacentini (CERFACS)  
From the point of view of modellers, the aim of Data Assimilation techniques is to 
incorporate information drawn from observations into a time evolving model, in order to 
enhance its accuracy. Typical application examples are the determination of the optimal initial 
condition and of a set of parameters for a forecast model or the integration of large quantities 
of validated observational data in long term reanalyses.  

 There is a full collection of data assimilation methods and techniques, but they all share some 
basic components, such as a model, its linear tangent and adjoint (if available), an observation 
operator, its linear tangent and adjoint, and so on. This allows for the implementation of 
modular data assimilation suites, provided that the interfaces between components are 
coherently defined. 
The computational burden due to the assimilation process is usually higher or even much 
higher than the cost of the direct modelling itself. The best performances are clearly obtained 
when the data assimilation operators are integrated since the beginning in the model design. 
On the contrary, implementing a data assimilation procedure inside an existing model can 
easily turn out to be a cumbersome task and the resulting suite usually lacks of flexibility. 

In this situation it is recommended to implement the data assimilation suite as a coupled 
application where all the components keep a certain amount of independence and the 
assimilation algorithms is described by their order of execution and by the way they exchange 
data. With respect to a canonical climatic coupling, the coupled data assimilation suite 
application has to account for the repeated or conditional execution of the components and 
therefore for complex communication patterns. We define the former canonical coupling as 
static and the latter kind of coupling as dynamic. The PALM dynamic coupler, developed at 
CERFACS, grants the needed amount of flexibility. 

Examples of data assimilation suites implemented as couplings exist in the domains of 
atmospheric chemistry, oceanography and flood forecasting and the same approach could be 
easily extended to data assimilation in coupled models. 

	  



	  

Webbased Experiments With Earth System Models of Dierent Complexity Used for 
Education at Freie Universitat  

by Ingo Kirchner and Ulrich Cubasch, Institut of Meteorology, Freie Universitat Berlin 
 

1. Introduction 

The WEKUW system (Webbased experiments with climate and weather models) gives the 
students the opportunity to work with typical earth system models without too much technical 
background. Normally an earth system scientist performs simulations with complex models 
on super computers. In relation to the modeling, the earth system scientist switches between 
three different activities (see Fig.1). As analyst he analyzes various model experiments. As 
modeler he is setting up the model and performing the experiments, as developer he programs 
and changes the model. 

 

Figure 1: The various tasks of an earth system scientist to perform an experiment 
 

For these tasks he needs in addition to the earth science background good skills in 
computational sciences and technical programming. These skills are missing by most of the 
meteorology students. The WEKUW system hides most of the technical tasks from the user. 
The system builds an application layer between the models and the user interface. 

2. Climate Modeling with WEKUW 

The concept of the WEKUW system has the main focus on typical scientific questions. The 
user performs the simulations and learns the basic knowledge for the application of the 
models by doing the experiments. The minimum technical requirements are an internet 
connection and a web browser on the user side. The server connects to all different models in 
an unique way and do the simulation uncoupled from the user login. 



	  

 

Figure 2: Components of the WEKUW system 
 

The WEKUW system can be divided into the following components (see Fig.2): 
• The WEKUW server provides the basic functions for the uniform operation with the 

models. This includes the online help, starting the experiments, the data evaluation and 
the management of the user accounts. 

• The WEKUW models are a compilation of the individual models for different 
applications. For every model exists a catalog of scientific questions, a package for the 
local installation of the models and a chapter in the content area of the server. 

• The WEKUW training course follows the personal learning path, or is embedded in 
the curriculum. Normally a selection is made by the tutor based on the pool of the 
models with their question catalogs. A training course for example is managed on the 
platform of the FUB (http://wekuw.met.fuberlin.de/WEKUW/current/). Another 
typical application scenario of the WEKUW system is the goal-oriented involvement 
of experiment selection and is used for demonstration of practical activities. 



	  

The user side of the server supports two roles, the tutor and the student. The tutor can control 
the educational process of each student individually. He will switch the models on or off, 
unlock the experiments for the student and he can comment the experiment results of each 
student in the web-environment. The student has access to the documentation of each model 
and each experiment. He can start the experiments which are unlocked for him. For each 
experiment type the user can store notes inside the web-environment and the tutor can 
comment these individually via the web interface. 

3. Example Workow with WEKUW 
The web interface allows to modify the model control parameters, to start the models, to 
control the experiments and to analyse the results of each simulation (see Fig.3). 
 

 
Figure 3: The basic workow in the user mode of the WEKUW system 

For each model a series of different experiments is available. This list is continuously 
expanded and includes currently: 

• EBM  an energy balance model, see e.g. McGue/Henderson-Sellers (1997) 
• PUMA  the Portable University Model of the Atmosphere of the University of 

Hamburg, see Fraedrich et al. (2001) 
• ECHAM4 the 4th generation of the atmospheric global circulation model of MPIM 

Hamburg, see Roeckner et al. (1996) 
• PLASIM the planet simulator of the University of Hamburg, see Lunkeit et al. (2004 

and 2005) 
• RCG the regional chemical transport mode of the TrUmF group (tropospheric 

environmental sciences) of the Institute of Meteorology at FUB, see Stern (2003 and 
2004) 



	  

Here a short session scenario will be described to demonstrate a typical experiment workflow. 
After individual registration, the tutor will unlock a specific scientific question, e.g. task D/03 
in the ECHAM4 section “What is the effect of the parameterization of radiation, friction, and 
clouds?". Now the student will login with his own account and will go to the selected task. On 
the introduction page of the experiment the student will see additional references and a short 
explanation of the scientific background. Here he can fill in a note, e.g. writing down the 
individual experiment plan. By using the “execute experiment" button, the user opens the 
conguration page. In our example the user will make two experiments, for the first one only 
the experiment name will be changed to “control" and the experiment will be submitted. For 
the second experiment the name is changed to “noclouds", the cloud parameterization is 
switched off, the experiment is submitted and the student can logout. The simulations will be 
executed in the background. After few hours the student will analyse the experiments. He will 
login again, chooses the “analysis" button from the main WEKUW menu and opens the 
experiment result pages of both experiments. Now he can compare the preprocessed figures, 
download and analyses the raw data or can read more details about the runscript and the 
model, e.g. browsing in the source code of the model. 
4. Summary and Outlook 

The WEKUW system is used since 2003 for the training of meteorology students. In the 
training course the students start with an energy balance model (EBM), continue with 
experiments of a simple general circulation model (PUMA), with an aerosol chemistry 
transport model (RCG), with a complex global atmosphere model (ECHAM4) or with a 
simple earth system model (PlaSim). There is no limitation for an extention of the system 
with new models, as each new model can be implemented in a modular way. 
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WEKUW installation at the Freie Universität Berlin. 



	  

Metadata and coupling 
by Rupert Ford (Manchester University)  
	  

This talk concentrates on two potential uses of Metadata for Coupling. The first is to 
configure a set of model components into a particular coupled model run. The second is to 
capture the provenance of a particular coupled model run.  
For coupled model configuration we compare and contrast three coupling systems, the two 
most widely used ESM coupling systems (ESMF and OASIS) and BFG, which is fully 
metadata driven. 

For coupled model provenance we introduce and propose the Common Information Model 
(CIM) that is being developed by the METAFOR project.  

Finally we present a vision of using the CIM (or some future derivative) as the "lingua franca" 
for both provenance and configuration Metadata. 
 



	  

	  

Leveraging the New CESM1 CPL7 Architecture - Current and Future Challenges 
by Mariana Vertenstein (NCAR)  
	  

New CESM science will build on the scalability, flexibility and extensibility of the new CPL7 
architecture. Key examples of this will be outlined in this talk. CESM1 is now targeting 
unprecedented global resolutions for all components. The CESM1 coupling infrastructure has 
been extended in order to provide data assimilation capability in order to obtain better ocean 
initial conditions for the upcoming decadal prediction runs that are part of the CMIP5 
experimental protocol suite. A new land ice sheet component has been added that will provide 
the capability of better predictions of sea-level rise. The CPL7 paradigm has also been 
leveraged to create a new “ocean” component that permits the nesting of a regional model, 
ROMS, in the global ocean component, POP. The flexible inclusion of a new isotope 
capability will help provide new insights in the global hydrological cycle and of ocean model 
circulation. Finally, the incorporation of super-parameterization in CAM, and the 
accompanying changes to pass new surface fields to CAM, will result in better simulations of 
clouds, one of the largest sources of uncertainly in climate models. These topics are 
summarized in more detail below. 
Ultra High Resolution: Scalability out to tens of thousands of processors has already been 
demonstrated with the addition of the HOMME dynamical core in CCSM4 (CAM4).  An 
outstanding goal is to approach a global horizontal scale of 10km across CESM components.  
Critical to the ability to achieve this scaling has been the introduction of memory and 
performance scalability that could not have been obtained without the use of a new and 
efficient parallel I/O library, PIO, that was designed and implemented by CESM collaborators 
at NCAR, ANL, ORNL and LLNL. Previous to PIO, external storage accesses was limited to 
a single master process, thereby creating a serial bottleneck, degrading parallel performance 
scalability of the application as a whole, and exhausting local memory at ultra high model 
resolutions.  A parallel solution was therefore needed that had more generality than having all 
processes access the external storage, especially to access to the same file. The latter case can 
lead to failure or very poor performance when thousands or hundreds of thousands of 
processes are involved. 

PIO was initially designed to allow better memory management for very high-resolution 
simulations by relaxing the requirement for retaining the memory corresponding to the global 
2-d horizontal resolution on the master I/O task. Since then, PIO has developed into a general 
purpose parallel I/O library that serves as a software interface layer designed to encapsulate 
the complexities of parallel I/O and to make it easier to replace the lower level software 
backend. PIO has been implemented throughout the entire CESM system and currently 
supports serial I/O using netCDF and parallel I/O using pnetCDF. PIO calls are collective. An 
MPI communicator is set in a call to the PIO initialization routine and all tasks associated 
with that communicator must participate in all subsequent calls to PIO.  
One of the key features of PIO is that it takes the model’s decomposition and redistributes it 
via a generic framework-independent rearranger to an I/O “friendly” decomposition on the 
requested number of I/O tasks. It is important to note that there is no imprinting of the model 
decomposition in the resulting I/O file. In using the PIO library, the user must specify the 
number of I/O tasks to be used, the stride or number of tasks between I/O tasks and the 
backend type (e.g. pnetCDF). By increasing the number of I/O tasks, the user can easily 
reduce the serial I/O memory bottleneck even with the use of serial netCDF. 



	  

Extending the coupler infrastructure - data assimilation: Short-term decadal prediction 
runs are part of the CMIP5 protocol suite and will be much more sensitive to ocean initial 
conditions. New ocean data assimilation has been incorporated into the model system by 
extending the coupling architecture in order to permit the instantiation of more than one 
instance of a model component within the single model executable. This new capability is 
utilized to perform ocean data assimilation using Kalman Ensemble filtering via the Data 
Assimilation Research Testbed (DART).  To perform ocean data assimilation, DART is 
combined with the Community Atmosphere Model (CAM) and the Parallel Ocean Program 
(POP) to create loosely coupled ensemble analyses of the ocean that are consistent with the 
analyses of the atmosphere. Ocean data assimilation has been carried out using 48 members of 
POP initially drawn from model climatology and 48 members of a data atmosphere that 
comes from an independent CAM ensemble member analysis (also using DART) where 
observed ocean temperature and salinity is assimilated every midnight. The large ensemble 
and diverse atmospheric forcing lead to improvements in the ensemble mean ocean analysis. 
 
Introduction of new model component – land ice sheet: The ice sheets of Greenland and 
Antarctica are strongly coupled to the ocean, land and atmosphere, and are expected to play a 
pivotal role in the global sea-level rise in the 21st century. Consequently improved sea-level 
predictions are needed for mitigation and adaptation strategies. A new dynamic ice sheet 
component has been added to the CESM1 system that will enhance the ability to predict 
changes in ice sheets and sea level rise on the decade to century time scales. CESM 1.0 now 
includes Glimmer-CISM (v1.6), the Community Ice Sheet Model and is the first publicly 
released IPCC-class model to include a dynamic ice sheet model. The current ice-sheet 
component, is serial and does not include the higher-order dynamics required for modeling 
fast-flowing ice streams and outlet glaciers. However, it does include a new surface-mass-
balance scheme in the land component that passes numerous new fields through the coupler.  

Currently, only one-way coupling between the land surface and ice sheets is utilized. The 
surface mass balance of ice sheets is computed in CLM and downscaled to Glimmer-CISM 
within the ice-sheet model.  The ice sheet then evolves in time, but the topography and 
surface types in CLM are held fixed.  Furthermore, ice-sheet/ocean coupling is also not 
supported and is needed to simulate interactions between oceans and floating ice shelves. A 
near term goal is the addition of a parallel, fully coupled ice sheet model with advanced 
dynamics that will send data such as ice area and elevation to other CESM components and 
receive boundary conditions such as ice accumulation and melting rates from land and ocean 
models. 

Introduction of embedded regional models – NRCM: CESM1, along with many current 
global climate models shows significant biases in properties such as sea surface temperature 
in upwelling regions. Increasing the atmospheric resolution helps, but is not sufficient. One 
approach that is being taken in CESM1 to mitigate these biases is to embed a high-resolution 
limited domain model, the Regional Ocean Model System (ROMS), within POP, in each of 
the upwelling regions.  The hope is that embedding regional 1/10° ROMS models in a global 
system containing a 1° ocean (POP) will permit the resolution of regional scale processes as 
well as their influence on the large-scale climate, thus leading to improved simulations in 
these regions. 

The approach taken for NRCM is to create a new “hybrid” OCN component that in effect 
serves as a driver and coupler for a POP-ROMS system.  The OCN component couples to the 
CPL7 driver as if it was a standard CESM1 component. However, the sea-surface 
temperatures (SSTs) passed back to the driver correspond to merged POP/ROMS SSTs. The 



	  

POP model still receives atmosphere/ocean fluxes that are computed in the coupler code. 
However, ROMS computes its own atmosphere/ocean fluxes thereby requiring a new time 
series of atmosphere forcing fields on the atmosphere grid to be passed to the OCN 
component. 

Introduction of flexibly specified new fields – addition of isotopes: CESM is targeting the 
addition of isotope tracers in order to better understand the flow of water, carbon and nitrogen 
in the model system. From a scientific perspective, water isotopes are used to provide new 
insights into the global hydrological cycle and cloud processes. The addition of these isotopes 
to CESM would also enable for the first time a direct comparison of model output to 
paleoclimate archives. Similarly, the addition of carbon isotopes to CESM will lead to new 
understanding of ocean model circulation and deep-water mass formation processes. The goal 
is to extend the current coupling scheme to allow for the run time specification of isotopes 
and have the coupler automatically pass the tracers between components. 

Introduction of new physics – addition of super-parameterization in CAM: The modeling 
of clouds is one of the major sources of uncertainty in global climate models. One approach to 
removing this uncertainty is to migrate to global cloud resolving models. However, this 
currently results in a prohibitive computational cost. An intermediate approach, that is 
believed to provide more accurate simulations of cloud fields, is to replace only the 
parameterized moist physics in each model grid column with a “small” cloud resolving 
model.  This approach is referred to as super-parameterization. From a coupling perspective, 
the introduction of super-parameterization in CESM/CAM will require new flux information 
from the surface components. In particular, in addition to state and flux fields, the 
introduction of super-parameterization will also require the sending of higher-order moments 
of these fields that describe spatial variability information for these fields.  

Finally, new CESM science will also require addressing new computational challenges such 
as the incorporation of new parallel workflow and post-processing functionality and 
determining ways to leverage GPU functionality to benefit model performance.  

	  



	  

	  
Coupled models at the Max-Planck-Institute for Meteorology 

by René Redler (MPI Meteorology)  
 
We start with a description of the current production version of the Earth System Model 
(ESM) developed and used by the Max Planck Institute for Meteorology (MPI-M) , now 
named MPI-ESM Version 1, with special emphasis on the coupling of the atmosphere and 
ocean model via the OASIS coupler. The short technical description of MPI-ESM1 serves as 
the basis for an introduction to MPI-ESM2, the new coupled model under development at 
MPI-M. 

The MPI Earth System Model Version 1 

MPI-ESM1 is designed to simulate the full Earth System over periods of hundreds to a few 
thousand years. The Earth system model is the major tool for experiments addressing 
questions for example on the internal variability of the system or its susceptibility to natural or 
anthropogenic perturbations, including major volcanic eruptions, variations in the solar 
irradiation or anthropogenic greenhouse gas emissions. The MPI-ESM1 consists of four main 
components: the atmospheric ECHAM6 model, the land model JSBACH, the ocean model 
MPIOM and the ocean-biogeochemistry-model HAMOCC. A sea-ice model, the fifth major 
component in our system, is included in MPIOM. The MPIOM and HAMOCC on the one 
hand and the ECHAM6 and JSBACH models on the other hand are coupled directly, while 
the air-sea-exchange in the coupled MPI-ESM1 is taking place via OASIS3. Technically, this 
is solved by a coupling between MPIOM and ECHAM6. The atmosphere part collects 
contributions from land (e.g. river runoff) while the ocean collects data from the ice and the 
ocean-biogeochemistry model. While for the internal coupling data are exchanged at every 
time step, for the external coupling the interval for data exchange between the ocean and the 
atmosphere is set to one day. Coupling fields are accumulated at each time step within the 
sending model components locally on each process. Data are averaged before sending them to 
the OASIS3 coupler. 

The boundary values that are exchanged between the atmosphere and the ocean are : 
Ocean/Sea-Ice/Ocean-Biogeochemistry to Atmosphere/Land 

• sea surface temperature 
• sea ice concentration 
• sea ice thickness 
• ocean horizontal surface velocity 
• CO2  flux 

Atmosphere/Land to Ocean/Sea-Ice/Ocean-Biogeochemistry 
• solar and non-solar heat fluxes 
• precipitation, evaporation, river runoff 
• snow fall 
• horizontal wind stress 
• CO2 concentration 

As an alternative to the fully coupled model configuration the software environment allows to 
run subsets of the model system (see Table 2). 
 



	  

ECHAM6 – JSBACH – MPIOM – HAMOCC  coupled with OASIS3 

ECHAM6 – JSBACH – MPIOM coupled with OASIS3 

ECHAM6 – JSBACH   

MPIOM – HAMOCC   

MPIOM  

JSBACH  

Table 2: Possible model configurations of MPI-ESM version 1 
 

In terms of horizontal and vertical resolution, the coupled MPI-ESM1 and it subcomponents   
can be assembled in several different model configurations: 
 

Horizontal and vertical resolution # of horizontal grid points  

Atmosphere Ocean Atmosphere Ocean 

T31L19 GR30L40 96 x 48 121 x 101 

T63L47 GR15L40 192 x 96 256 x 220 

T127L95  TP04L40 384 x 192 802 x 404 

T255L199 TPM6L80 768 x 384 3586 x 1800 

Table 3: Possible coupled model configurations of MPI-ESM1 
 

In production mode the T127L95 ECHAM6/JSBACH is typically run with up to 32 x 24 MPI 
processes and two OpenMP threads. MPIOM/HAMOCC (TP04L40) typically uses 16 x 8 
MPI processes. For our setup we use the parallel version of OASIS3 as it is provided by 
CERFACS with up to 21 OASIS3 processes, one for each coupling field. Even though we 
collect the data on the component root processes prior to the exchange with OASIS3 and 
redistribute them after having them received, the cost for coupling is reasonably low (less than 
2% of the total time) even at this quite high resolution. Efficient gather and scatter routines as 
well as the local accumulation of coupling fields all done inside our model components 
contribute to these low costs. 

Currently we investigate to replace OASIS3 with OASIS4, especially for targeting the high-
resolution configuration T255L199-TPM6L80. While it is quite straightforward to replace the 
OASIS3 interface with an OASIS4 interface in both our model components, we notice 
problems with the coupling of the MPIOM grid in the Arctic region. While the neighbourhood 
search in OASIS4 is quite efficient, it fails to generate proper interpolation stencils for target 
cells that intersect with the edge of the northern compute domain because no information is 



	  

provided about the connectivity of points. With OASIS3 this problem is still overcome by 
using the conservative remapping where the less efficient search provides correct results. 
While OASIS3 would only fail to provide correct results for a bilinear or bicubic 
interpolation, with OASIS4 even the conservative remapping would fail under certain 
conditions. This problem can either be solved by providing appropriate information about the 
connectivity rather than relying on the implicit data structure, or by extending the OASIS4 
functionality in such a way that it identifies missing cells and points in these critical regions 
by evaluating the geographical information provided by the user API. 

The MPI Earth System Model Version 2 

ICOsahedral Non-hydrostatic General Circulation Models (ICON) is a joint project of MPI-M 
and the German Weather Forecast Service (DWD), with the goal to develop a new generation 
of general circulation models for the atmosphere and the ocean in a unified framework. These 
models use unstructured grids derived from an icosahedral base grid. Parametrizations are 
inherited from MPI-ESM1 and so will be the component models HAMOCC and JSBACH; 
the coupling fields exchanged between ocean and atmosphere are similar to MPI-ESM1 as 
well. 
The first version of the coupled model will employ identical horizontal grids in atmosphere 
and ocean. While for each wet ocean point there is a corresponding grid point at the same 
geographical position in the atmosphere, grid points are partitioned in a different way in both 
media. A search is required to locate the process on which the remote grid point is located; in 
this simple case we do not require any interpolation. For this first simple coupling we have 
developed a customized light-weighted coupler which exploits the known grid hierarchy and 
geometry, and thus allows for an efficient search (and interpolation) on ICON grids. In our 
preliminary configuration grid points on identical geographical positions will have identical 
grid point indices which allows us to reduce the search to a 1d search along one integer array. 

The current plan is to extend this coupling software with growing needs of an advanced 
version of the MPI-ESM2 and use this as a simple test-bed to implement the functionality 
required like particular interpolation schemes or modifications of the user API. As the 
icosahedral grid has a hierarchical structure we plan to use this hierarchy for an efficient 
search strategy similar to the multi-level approach taken in OASIS4 for block-structured 
grids. In a third step we plan to integrate our software development into OASIS4 and provide 
an OASIS4 interface for the individual components to allow for a coupling of any of the 
individual MPI-ESM2 components to external models working on block-structured grids like 
MPIOM, ECHAM and others. 



	  

	  
Infrastructure requirements in support of Met Office models 
by Steve Mullerworth (MetOffice)  

The Met Office is developing its next generation of global coupled models, earth system 
models and forecast production models around the use of the OASIS coupler. In common 
with other models, higher resolution versions of these models urgently need more scalability 
in both the model formulation and the coupling framework. 

The coupled configuration currently under development comprises the Met Office Unified 
Model (UM) atmosphere, the NEMO ocean model and the CICE sea ice model and is called 
HadGEM3-AO. While the development of the climate configuration (N96, which is roughly 
1.5 degree atmosphere and 1 degree ocean) is still continuing, HadGEM3-AO is already being 
used to provide seasonal forecasts in production (GLOSEA4), with plans to migrate to a 
higher resolution version of this model (N216 and 0.25 degree ocean).The OASIS3 coupler is 
currently used for all resolutions of the model. The N216 resolution version uses 8 instances 
of OASIS3 to manage the coupling of approximately 20 fields each-way. Plans are underway 
to migrate HadGEM3 to the parallel OASIS4. 

In the future, the HadGEM3 configuration is likely to form the basis of a range of models, 
from low resolution fast Earth System Models,through providing the mid-resolution scenario 
runs for the IPCC process, to providing a myriad of climate and forecasting services in a tight 
operational schedule. 

The UM atmosphere currently benefits from a highly flexible and configurable post-
processing system that allows users to select individual diagnostics, to select in-line time and 
domain processing individually for each chosen diagnostic, and to allow output of results to a 
choice of files. Asynchronous IO is currently being implemented to manage the output of 
these multiple files. 
We foresee addition of multiple other components into the current model system, such as 
wave models, chemistry models and new land surface schemes, each of which have differing 
demands on the coupler and model infrastructure. Flexibility in choices of how to couple and 
deploy components developed both at the Met Office and by our collaborators and external 
groups is likely to be an important requirement. 

 



	  

 
Addressing the Challenge of Exaflopic Computation 
by Jean-Yves Berthou, EDF R&D - European Exascale Software Initiative  Coordinator, and 
Jean-Claude André, Vice-Chair of the EESI Working Group on industrial and engineering 
applications 

Abstract 
Exaflopic systems, composed of millions of heterogeneous cores will appear at the end of this 
decade. This technological breakthrough will engage the HPC community in defining new 
generations of applications and simulation platforms. The challenge is particularly severe for 
multi-physics, multi-scale simulation platforms that will have to combine massively parallel 
software components developed independently from each others. Another difficult issue is to 
deal with legacy codes, which are constantly evolving and have to stay in the forefront of their 
disciplines. This will also require new compilers, libraries, middleware, programming 
environments (including debuggers and performance optimizers), languages, as well as 
numerical methods, code architectures, and pre- and post-processing tools (e.g., for mesh 
generation or visualization). 
The goal of the European Exascale Software Initiative project (EESI) is to build a European 
roadmap along with a set of recommendations to address the challenge of performing 
scientific computing on this new generation of computers. This paper presents the objective 
and first results of EESI as well as the international context on which this effort is conducted. 
Introduction	  

Exaflopic computer (10^18 floating point operations per second) composed of millions of 
heterogeneous cores are expected at the end of this decade. These incredible capabilities lead 
to outstanding technological breakthrough possibilities opening unknown areas in designing 
new products or optimizing existing ones in almost all society domains [5,6,7,8,11,12,15,18]. 

These massively parallel systems will engage the HPC community for the next 20 years in 
defining new generations of applications and simulation platforms. The challenge is 
particularly severe for multi-physics, multi-scale simulation platforms that will have to 
combine massively parallel software components developed independently from each others. 
Another difficult issue is to deal with legacy codes, which are constantly evolving and have to 
stay in the forefront of their disciplines. This will require new numerical methods, code 
architectures, mesh generation tool, visualization tool. In addition to the applications, all the 
software layers between the applications and the hardware need to be revisited. Many 
challenges are to be addressed: scalability, fault tolerance, programming models, to cite a few. 
As examples of scalability challenges, currently, none of the runtime environment allows 
executing an application on one million of nodes and there is no known solution to launch one 
million of processes on large scale machines in less than 5 minutes. Fault tolerance is another 
very important challenge to solve before being able to run applications on one million of 
nodes for hours. Several recent keynote addresses in top level conferences [11][12] have 
raised two significant issues: 1) the MTBF of very large computers is diminishing rapidly and 
will reach soon the time required for fault tolerance systems to only restart the application, 2) 
the exponential increase of the number of transistors and their exponential reduction in size 
with time, will increase significantly the number of “masked errors” that could be not detected 
by any system (silent soft errors). A third challenge is on the programming approaches for 
Peta-Exascale computer. Programming environments should deal with hierarchy, 
heterogeneity, flexibility and help the programmer for making his program scalable. 



	  

Performance, computational precisions, energy saving, etc. are also challenges to be 
addressed [3,4,13,14,16,20,21,22]. 
The International Exascale Software Project (IESP) 

Community of researchers in HPC software is convinced that there is no way for a single 
continent alone (America, Europe or Asia) to design and develop all the software needed for 
these computers. In USA, the Department Of Energy (Office of Science) has launched at the 
end of 2008 the International Exascale Software Project (IESP)[10,24] and has invited the 
international community, mainly US, Europe and Japan, to work together for providing the 
necessary tools, software and methods for new generation of HPC applications. This 
initiative, led by Jack Dongarra and Pete Beckman, claims that “…although the investments 
in these separate software elements have been tremendously valuable, a great deal of 
productivity has also been lost because of the lack of planning, coordination, and key 
integration of technologies necessary to make them work together smoothly and efficiently, 
both within individual PetaScale systems and between different systems…. It seems clear that 
this completely uncoordinated development model will not provide the software needed to 
support the unprecedented parallelism required for peta/Exascale computation on millions of 
cores, or the flexibility required to exploit new hardware models and features, such as 
transactional memory, speculative execution, and GPUs. We believe the community must 
work together to prepare for the challenges of Exascale computing, ultimately combing their 
efforts in a coordinated International Exascale Software Project”. 
EESI, building a European vision and roadmap 

Even if the European participation to IESP is significant, many experts and stakeholders in 
Europe are not involved in this roadmapping activity. Moreover, we are convinced that an 
Exaflopic roadmap should be conducted also at the European level, including the 
technological dimension as well as the applicative one.  This lead us to propose to the 
European Commission to fund the European Exascale Software Initiative, EESI [25]. EESI 
was launched the June 1, 2010 for a 18 months duration.  

The EESI goal is to build a European vision and roadmap to address the challenge of 
performing scientific computing on multi Petaflop performances in the next few years and 
Exaflop performances in 2020. EESI is investigating where Europe stands in the overall 
international HPC landscape, what are its strengths and weaknesses, what are the priority 
actions, and what cooperation modes should be implemented between Europe and the 
international community. EESI is also identifying the sources of competitiveness for Europe 
induced by the use of Peta/Exascale software. It is investigating and will propose programs in 
education and training for the next generation of computational scientists.  

A first mapping of the major HPC projects and organizations has been achieved. This 
mapping has been extended world-wide using IESP inputs and international contacts.  It is 
available on the EESI web site [1]. 
The EESI work plan is progressing in two directions. A first set of four working groups is 
targeting the technological computing domain challenges: hardware and associated software, 
computer science, numerical analysis and applicative software (ie. scientific and engineering 
codes). Each working group will produce its own roadmap by June 2011. A second set of 
working groups will target the applicative side by looking for major grand challenges in 
Climate and Weather forecasting, Industrial application (focus on Transportation and Energy), 
Physics and Engineering sciences and Life science-Health-BPM. Each of these four working 
groups will also produce its own roadmap integrating technological inputs identified by the 
first four working groups. The economic dimension and impact on European competitiveness 



	  

of these challenges will be particularly under study. To ensure close collaboration and 
sharing, one internal workshop will be held in February 2011 where each working group will 
be invited to present its first results and roadmaps.                            

An overall synthesis will be produced and be presented at a large final public conference in 
Barcelona in October 2011. 
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Designing HPC Software for an Uncertain World of Hardware 
by Wael Elwasif and David Bernholdt (Oak Ridge National Laboratory)  

Historically, the one constant in HPC hardware architectures is change, but the pace of change 
is, arguably, accelerating of late.  During the  transition from terascale to petascale, we've 
rather suddenly seen power concerns come to dominate, forcing a transition to horizontal 
scaling (increasing cores).  The world-wide HPC community is now planning an ambitious 
decade-long push to exascale with multiple (broad) paths forward, and significant technical 
uncertainty as to which one(s) will ultimately succeed in reaching the stated performance 
goals.  
 
Creating software which is simultaneously stable and functional enough to serve the long-
term needs of its users, and flexible enough to respond to the changing hardware environment 
without requiring undo effort will be one of the prominent challenges of the coming decade 
(and beyond). 
  
In this talk, we will examine some of the key trends in hardware architecture and other issues 
facing software developers, and discuss techniques on the software side that can help 
developers adapt to and benefit from the rapid advances in computing power expected over 
the next decade. 
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