
Interactive visualisation of OASIS

coupled models load imbalance
A. Piacentini, E. Maisonnave

TR/CMGC/20/177

Abstract

The OASIS coupling library has recently received improvements to better estimate the load

imbalance that a concurrent running of separate executable files can produce. The full

timeline of all OASIS related events, for each of the allocated resources, is now available in

netCDF format. A Python script is developed to visualise this timeline, thanks to the

matplotlib package. Its native zoom function facilitates the identification of possible

bottlenecks of the coupling. This document provides a short description of the script

functions and a user guide.

Table of Contents

Abstract...2

1- Tool description...4

1.1- Principle..4

1.2- Input..4

1.3- Implementation...5

2- User guide...5

2.1- Install...5

2.2- Parameters...6

Components...6

Fields...6

Rendering...6

Plots...6

TimeRange..6

2.3- Graphical interface...7

Appendix 1: json configuration file example...8

Appendix 2: yaml configuration file example...9

Appendix 3: An OASIS timeline plot using matplotlib...10

References..11

1- Tool description

1.1- Principle

The increasing parallelism of the supercomputers in use in the climate modelling community

necessarily imposes to adapt our codes and tools. Any operation that can be processed in

parallel must be coded accordingly. In that perspective, a coupler or a coupling framework is

a useful tool, that allows the concurrent running of models (coupled components) in coupled

systems such as ESMs, e.g. [1]. An efficient use of the allocated computing resources supposes

the harmonisation of the components speed. This operation, called load balancing, is often

neglected, either because of the apparent resource abundance and practical difficulties. The

first barrier must be jumped by people better informed of the resource cost and rarefaction

[2,3]. The second issue is addressed for the OASIS coupling library [4] users, since 2014 [5].

Recent improvements [6] lead to produce the full timeline of all OASIS related events, in any

of the allocated resources. This timeline provides the comprehensive description of most of

the operations related to the coupling, so that any simulation slow down in link with the use of

the OASIS library can be identified. The huge amount of information displayed requires an

efficient visualisation tool [7]. In particular, this visualisation must offer a zoom functionality, to

be able to precisely identify interesting events among the mass of the others. For that reason,

the matplotlib [8] Python tool is preferred to software such as FERRET [9].

1.2- Input

If the load balance tracing option is enabled (through namcouple parameter), the OASIS

library produces timelines in netCDF files. We call timeline a temporal sequence of events

occurring during a coupled simulation. The events can be common to all processes and

independent of the field exchanges:

• MPI partitioning description (PART)

• Coupling definition phase, including interpolation weights and addresses

computations (ENDF)

• Termination (TERM)

Events also occur in the time loop, and are related to a field exchange:

• sending (PUT)

• receiving (GET)

• mapping and interpolation (MAP)

• output on file (OUT)

• reading on file (READ)

• restart writing (RST), when partial coupling time step are required (TRN)

One timeline file is produced per coupled component. Each file includes variables which

describe:

• the clock time when starts and stops any event (nx) on any MPI process (ny) -

timer_strt & timer_stop -,

• the kind of each event – kind(nx) -,

• the ID of the exchanged field - field(nx)- and

• the ID of the component which exchanges the coupled field - component(nx) -

1.3- Implementation

The proposed Python script only relies on three specific libraries:
• matplotlib,

• netCDF4,to read the format of the timeline produced by OASIS

• json, to easily configure the visualisation or
• yaml

Each coupling event is plotted with a coloured rectangle. Their x-coordinates are given by the

start and stop clock measurement, their y-coordinate by the MPI rank of the process. Only

coupling related events are plotted. White areas represent non coupling computing instants,

i.e. periods when models are performing their own operations.

The visualisation can by done via the matplotlib graphical interface and/or on graphical

format file. Several graphical format are available. The PDF vector format also allows zooming

over region of interest. To facilitate the printing of the file content, the plot size corresponds to

an A4 fold.

A default graphical palette [10] is defined to facilitate the reading to color blind users [11].

However, one could specify its preferred colormap.

To plot the figures takes up to several minutes when tens of million events are involved. If the

visualisation interface is not wished by the user (plot in file only), the X11 server will not be

called. This option speeds up the processing, and allows to use the script on terminal only

machines. To further speed up the data processing, it can be done on a subset of the event, by

defining time boundaries.

2- User guide

2.1- Install

An appropriate Python3 library and environment is necessary to launch our script. The 3.7.9

version was tested successfully on a legacy Intel Harpertown desktop, but an older v3 should

match. The previously cited libraries1 are also mandatory. You have to indicate as argument the

name of the json (or yaml) parameter file described in the next chapter :

> pyLucia.py lucia.yaml
or
> pyLucia.py lucia.json

after defining the appropriate paths.

1 NetCDF4 , json , sys, os , time , numpy, math, matplotlib

2.2- Parameters

The json configuration file (an example is given in Appendix 1) includes several mandatory or

optional objects. They define the workflow of our visualisation, and information that is not

included in the OASIS netCDF input file but must appear in the visualisation to label (or

design) the plotted timeline. Optionally, the same information can be described in a yaml

format configuration file (see Appendix 2 for example)

Components

The files describing the timelines of the coupled system must be named. A model name must

be added to fully describe the input information. User must declare one sub-object

(file,name) per component.

Fields

Coupling field are identified in OASIS by numerical or alphanumerical IDs. For a non

ambiguous naming, it is required to the user to explicitly provide the coupling field names in

this json/yaml object. Fields must be named following the OASIS namcouple sequence.

Rendering

One may choose to visualise the timeline through the matplotlib GUI visualisation tool. In

this case, the Display sub-object must be set to true. In case of plotting the graphics in file,

the File sub-object value must be set to the name of the output file. Extension in the name

defines the file format. Joint visualisation at screen and writing on file is possible. As an option,

boundaries of the event rectangles can be plotted. This option (EventsBounds sub-object)

can clarify the event sequence when several events of the same

kind/field/counterpart_component follow one another. The Palette option allows to

choose among the matplotlib built-in colormaps.

Plots

Up to three graphic can be displayed in the same plot. For that, the user will set to true the

Kind, Field or Component sub-object, depending on the netCDF variable(s) it would like

to see.

TimeRange

To reduce the timeline along the x-axis (time), a fraction (minFrac/maxFrac) or a time

window in second (minTime,maxTime) of the full timeline can be defined. If both

fractions and time bounds are prescribed, only fractions are taken into account.

2.3- Graphical interface

A call to the matplotlib.pyplot.show command at the end of the script opens an

interactive window. An example of timeline visualisation with this GUI is shown in Figure 1. The

belonging of resources to each component is delimited by dashed black lines. Zooms and

movements in plots are possible via push buttons. The zoomed figure can be saved into

graphical format files. The mouse cursor is configured to display its position (time/resource

number) and the name associated to the designated rectangle (kind, field or component). The

local communicator MPI rank and the name of the component are also shown.

Figure 1: Example of GUI visualisation of kind, coupling field and component counterpart in

timelines of three coupled components

Acknowledgments:
This work has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 824084 (IS-ENES-3). whereby.com provided the
browser-based video meeting tool.

Appendix 1: json configuration file example

{
 "Components":[
 {"Name":"Ocean",
 "File":"timeline_oce.nc"},
 {"Name":"Atmo",
 "File":"timeline_atm.nc"},
 {"Name":"IOserver",
 "File":"timeline_ios.nc"}
],
 "Plots":{
 "Kind" : true,
 "Field": true,
 "Component": true
 },
 "TimeRange":{
 "minFrac":0.25,
 "maxFrac":0.5,
 "minTime":20,
 "maxTime":145
 },
 "Rendering":{
 "Display": true,
 "File":"Lucia.jpg",
 "EventsBounds": false ,
 "Palette":"tab10"
 },
 "Fields":["Heat","Rain","Love"]
}

Appendix 2: yaml configuration file example

Components:
- Name: Ocean
 File: timeline_oce.nc
- Name: Atmos
 File: timeline_atm.nc
- Name: IOserver
 File: timeline_ios.nc
Plots:
 Kind: True
 Field: True
 Component: True
#TimeRange:
minFrac: 0.25
maxFrac: 0.5
minTime: 20
maxTime: 145
Rendering:
 Display: True
 File: Lucia.jpg
 EventsBounds: False
 Palette:tab10
Fields:
- Heat
- Rain
- Love

Appendix 3: An OASIS timeline plot using matplotlib

References

[1] Séférian, R., Nabat, P., Michou, M., Saint‐Martin, D., Voldoire, A., Colin, J., Decharme, B.,

Delire, C., Berthet, S., Chevallier, M. and Sénési, S., 2019: Evaluation of CNRM Earth System

Model, CNRM‐ESM2‐1: Role of Earth System Processes in Present‐Day and Future Climate.

Journal of Advances in Modeling Earth Systems, 11(12), pp.4182-4227

[2] Berthoud, F., Bzeznik, B., Gibelin, N., Laurens, M., Bonamy, C., et al., 2020: Estimation de

l’empreinte carbone d’une heure.coeur de calcul. (in french), Rapport de recherche; UGA –

Université Grenoble Alpes; CNRS; INP Grenoble; INRIA. 2020. hal-02549565v4

[3] Thompson, N. and Spanuth, S., 2018: The decline of computers as a general purpose

technology: why deep learning and the end of Moore’s Law are fragmenting computing,

Available at SSRN 3287769

[4] Craig A., Valcke S., Coquart L., 2017: Development and performance of a new version of

the OASIS coupler, OASIS3-MCT_3.0, Geoscientific Model Development, 10, pp. 3297-3308,

doi:10.5194/gmd-10-3297-2017

[5] Maisonnave, E., Caubel, A., 2014: LUCIA, load balancing tool for OASIS coupled systems,

Technical Report, TR/CMGC/14/63, SUC au CERFACS, URA CERFACS/CNRS No1875,

France

[6] Maisonnave, E., Coquart, L. and Piacentini, A., 2020: A better diagnostic of the load

imbalance in OASIS based coupled systems, TR/CMGC/20/176, SUC au CERFACS, URA

CERFACS/CNRS No1875, France

[7] Guilyardi, E., 1996: The Vairmer Experiment Manager. User's Guide and Reference Manual,

Technical Report, TR/CMGC/96/20, 102pp, CERFACS, France

[8] Hunter, J. D., 2007: Matplotlib: A 2D Graphics Environment, Computing in Science &

Engineering, vol. 9, no. 3, pp. 90-95

[9] http://ferret.pmel.noaa.gov/Ferret

[10] Goedhart, J., 2019: Material related to the blog "Dataviz with Flying Colors". Zenodo.

http://doi.org/10.5281/zenodo.3381072

[11] Ichihara, Y. G., Okabe, M., Iga, K., Tanaka, Y., Musha, K., & Ito, K., 2008: Color universal

design: the selection of four easily distinguishable colors for all color vision types. In Color

Imaging XIII: Processing, Hardcopy, and Applications (Vol. 6807, p. 68070O). International

Society for Optics and Photonics

https://www.cerfacs.fr/globc/publication/technicalreport/2014/lucia_documentation.pdf

	Abstract
	1- Tool description
	1.1- Principle
	1.2- Input
	1.3- Implementation

	2- User guide
	2.1- Install
	2.2- Parameters
	Components
	Fields
	Rendering
	Plots
	TimeRange

	2.3- Graphical interface

	Appendix 1: json configuration file example
	Appendix 2: yaml configuration file example
	Appendix 3: An OASIS timeline plot using matplotlib
	References

