
A better diagnostic of the load imbalance
in OASIS based coupled systems

E. Maisonnave, L. Coquart, A. Piacentini
TR/CMGC/20/176

Abstract

Coupled computations in separated executables are often performed concurrently. Their
respective speeds is a function of their MPI parallelism. Speeds cannot be the same, and
computations load balanced, without setting the appropriate MPI domain decomposition,
which is unlikely to happen without a comprehensive work. A complete rewriting of the tool for
load balancing measurement in OASIS coupled models (lucia) becomes necessary, with two
main requirements that are to simplify of the delivered information, proposed to non technical
staff and to avoid any disk writing at runtime that could perturb the measurement. This
implementation proposes an alternate version launched by the OASIS library itself at the end
of the simulation. We avoid the production and the post-processing analysis of trace files. We
deliver at low cost a larger set of summarised quantities that can help to better understand
the origin of any coupling extra cost. Moreover, we provide the timeline, for every process
involved in the coupling, of every coupling events, such as coupling field sending or receiving, but
also interpolation, file reading or writing, in addition to the coupling initialisation or termination
phases. These timelines are available in netCDF format files that can be easily and quickly
handled with commonly used visualisation tools. To be able to keep the implementation as
simple as possible (~ 700 lines), we limit the analysis to an OASIS component (and not
partition) per-basis, that requires additional memory, mainly on each component master
process, approximately equal to the size of a single precision array containing the coupling
events x number of MPI processes. This means that users will have to restraint the analysis to
relatively short simulations or reasonably MPI-parallel models to avoid memory overf low

Table of Contents
1- Rationale.. 4
2- BSC exploratory work.. 5
3- Proposed solution... 9
4- Implementation.. 10
5- Validation... 15
6- Conclusion... 17
References... 19
Appendix 1: Header of a netCDF timeline file..20
Appendix 2 : FERRET script for timeline visualisation..21
Appendix 3: Load imbalance analysis (summarised text information)...22

1- Rationale

The modularity of the MPI “Multiple Program - Multiple Data” (MPMD) coupled configurations
have unfortunately a drawback : it is easy to waste a large part of the computing resources
they need. Computations in separated executables are often performed concurrently. Their
respective speeds is a function of their MPI parallelism. Speeds cannot be the same, and
computations load balanced, without setting respective appropriate MPI domain
decompositions, which is unlikely to happen without a comprehensive work. A collection of
CMIP5 model simulation analysis [1] shows that up to 62% of the allocated resources can be
wasted by this imbalance. Even though such a deep problem has several origins, like the lack of
human resources for solving non blocking computing issues, or the popularity of non frugal
configurations, e.g. [2], we think that, in the perspective of the reduction of the carbon
footprint of our activities, the problem of load imbalance in coupled configuration is well worth
some effort of addressing. In addition, to have any chance to actually reduce the waste at a
community level, any proposed solution should be simple and portable enough to fit all the
community requirements, and this solution must be strongly advertised in the coupler
documentation.

A first solution [3] was implemented in 2014 for the OASIS3-MCT based coupling systems.
Called “lucia”, this post processing tool aimed to deliver a simplified evaluation of the load
imbalance. It derives from an exploratory tool developed in 2010 for OASIS3 [4]. Since the
OASIS3 coupler was a separated executable (OASIS3-MCT is a library included in the model
executable), the post-processing tool has to be adapted but some part of the code originally
designed for a separated coupler remained inadequate. Included in the official OASIS release, it
fitted most of the community requirements during the last decade. But diff iculties emerged,
that can be categorised following two axes:

• the simulation slow down due to OASIS traces, needed by the post processing tool, and
written on disk during the simulation [5] ;

• the irregular duration of model time steps (computation, disk access) which could lead
to erroneous interpretation of the lucia simplified diagnostic, as observed for the EC-
Earth model in [6].

These issues cannot be remedied without a deep modification of our code. This put together
with its congenital inadequacy to the lack of central coupler in separate executable, we
conclude that a complete rewriting of the load balancing measurement routines is necessary.

This overhaul is constrained by two requirements:

• the simplicity of the delivered information, in direction to a public (all community
researchers, technical staff, students) that has few time to spend to the technical setup
of a model ;

• no disk writing.

Simplicity is the core advantage of our dedicated tool, in comparison to more comprehensive
analysis of the MPI communications of a model, that can be done by a tool like paraver [7],

more powerful but less usable (readability/handling of highly parallel configurations,
compatibility with MPI MPMD, diff iculty to separate OASIS communications from others).

In our previous version of the post processing tool, the in-memory implementation was not
considered as mandatory. The opposite choice (disk writing) was useful to avoid a memory
congestion, but also to make possible an evaluation of the load imbalance before the end of the
simulation. We think it is now possible to rely on the high parallelism of our models to think
about a distributed version of the post-processing tool algorithm.

In addition to these two main constraints, one could like to add to the requirements :

• To diagnose the total time of the simulation. Since our measurements exclude the first
and last time steps, the duration of the initialisation and termination phases are ignored,
though OASIS can be at the origin of slow downs during these phases. A measurement
can be done just before the OASIS_init and just after the OASIS_terminate
routines to have a good estimation of this duration ;

• To include the OASIS internal timings ;
• To compute normalised performance parameters like speed in SYPD, cost in CHPSY.

At the opposite, we are strongly unfavourable to try to evaluate the non precisely defined
“time of communication”, which would also require to precisely identify the communication
pattern and would be paid by a complication of our code. Though we do not deny the
existence of this coupling extra time, its importance would only be noticed at the limit of the
models scalability, a zone where the model internal communications and imbalance costs [8]
are probably dominating any coupling extra cost.

2- BSC exploratory work

In the framework of the IS-ENES3 EU project, a team of the Barcelona Supercomputing Centre
proposed to enhance the functioning and the quality of the information provided by the load
balancing post processing tool lucia. To let us testing this solution, they provided a set of
OASIS modified routines (mod_oasis_advance.F90 & mod_oasis_method.F90), a
new Python tool for post processing (lucia_lite.py) and a comprehensive documentation.

OASIS is a community tool, currently in use in dozens of coupled models. For that reason, it is
necessary to test any modification of this library (including the load balancing tool) on a large
set of representative cases and various supercomputing environments. The final validation
would have to be done that way. But for the need of this intermediate evaluation, a single
testing with the tutorial1 example, available in the OASIS release, is done. This test proposes the
exchange of 2 fields, during an adjustable number of time steps, between two small FORTRAN
programs.

As a first step, a machine has to be selected with the following constraints:
• a Python library, posterior to the 3.6 version, must be installed, together with the Panda

1.0.3 packet ;

1 See examples/tutorial directory of OASIS off icial sources

• an X server must be accessible to be able to produce the new set of plots which details
the load balancing characteristic2.

This latter constraint forbids the use of our domestic supercomputer, the AMD Rome
“belenos” machine, recently installed at Météo-France. The first constraint also removes from
the list of compatibility all our CERFACS local machines, the CNRS supercomputers jean-zay
and irene, and the NERSC machine fram. The only machine (accessible for this test) that fits
the requirement is the DKRZ supercomputer mistral. A small number of resources, available
in the context of the OASIS dedicated support, also organised within the IS-ENES3 project, were
used to proceed to both coupled simulation (compute nodes) and post-processing (interactive
node). This shortening of the compatible machine list is the consequence of the use of recent
Python functionalities. Even though this issue is supposed to be solved when new machines, and
their up-to-date Python libraries, will replace the current ones, it could be good, for the large
compatibility needed by the OASIS community tool, to restrain the use of too recent
functionalities.

The post-processing analysis gives the expected results on mistral. However, the setting, in
the Python code, of 3 out of the 4 parameters was necessary (bounds of coupling steps to take
into account, amount of files to read, number of coupling steps to print). We found that the
fourth parameter (components that will not be taken into account for the analysis) would
better be calculated, e.g. by evaluating to zero their number of coupling fields.

We can summarise the analysis of the results given by the post processing tool in three points:

• The Python tool produces additional plots and gives more information about the
coupling, from which an analysis of model dependences (which model is waiting for
which one) and a En/Cn/In3 decomposition on a coupling time step basis ;

• It provides the original load imbalance graphic for each component (oasis.png). For
comparison, and thanks to modifications also provided by BSC, we performed an
original lucia analysis on the same set of traces. The Python tool numbers slightly
differ from the lucia ones, which can be explained by the functional differences
emphasised below ;

• For a simple coupled simulation (30 coupling time steps, 2 computing cores and 2 fields
exchanged) the post processing analysis takes quite a long time (11s for 22 time steps
and 2 processors). We did not try to have a better idea of the scaling property of the
tool. The original lucia tool selects a subset of MPI processes, to better save
computing performance, during runtime (disk writing) and post processing (disk writing
and memory requirements). The Python tool parametrisation allows to perform an
analysis based on the whole set of coupling events, but requires that the whole
corresponding information must be produced at runtime.

We also noticed a functional regression compared to the original lucia tool: the exclusion of
processes not involved in coupling is not possible, unless the master process is the only one
involved.

In order to give an En/Cn/In decomposition per “timestep”, one of the most interesting
additional information produced, the BSC developers introduced a definition of what a

2 We assume that it would be possible to avoid this by producing only files without X11 windows visualisation
3 En : Waiting time for component n, Cn : computing time, In : OASIS interpolation time

timestep is in the context of a coupled system. For each “timestamp”, i.e. the current simulated
time in second when an operation is performed, the first coupling operation (sending, receiving
or interpolating) is identified. Then, for each component, a timestep is defined as the time
interval between two consecutive first coupling operations. We will call this timestep “coupling
interval” or CI. We did not practically get the value of a CI when calculated with a component
that does not include any event during a time stamp, but we think it is equal to zero, which
could be somehow misleading. In addition, the CI duration could be irregular.

Figure 1: En/Cn/In decomposition per timestep, for selected timesteps of a
“tutorial” coupling system run

On figure 1, we show the CI related plot we got with the “tutorial” example. The irregularity
of the CI length gives the wrong feeling that the model 1 computation per model timestep is
also irregular. A closer look to the plot shows that the computing time is two time smaller
when the CI length is also two time smaller. But the same analysis would lead to conclude that
model 2 has irregular computing time per model timestep, which is not the case. Actually, this
irregularity comes from the definition of CI bounds that could lead to wrongly attribute the
computing time of a model timestep to the previous or the next CI. In our Fig 1 example, a
close check of the CI content shows that 3 model time steps are included in the CI tagged 8h,

14h, 20h and 2h, but only 1 model time step in the CI tagged 9h, 15h, 21h and 3h. The
irregularity is due to the irregular length of a CI, and not to the irregularity of the model time
step.

One could also find misleading to see that, for a given time stamp, the sum of coupling and non
coupling tasks is not the same for model 1 and model 2, considering that they are the only two
components of the system. These confusing details probably shows that the choice of CI as time
slice unit, though convenient, may not be the best to reveal the load imbalance at a finer time
scale than the whole simulation duration.

Figure 2: Example of coupling operation, performed on 8
processes, and the corresponding En definitions in original lucia

(min/max) and new Python tool

The BSC tool innovation which is the less compatible with the needs described in Chapter 1
deals with the definition of En (for each model, time spent waiting for completion of sending
and receiving MPI messages) and, consequently, Cn (for each model, the time spent to perform
its own calculations and OASIS interpolations). In the previous version of lucia, En measures
the time spent for each coupling operation, between the latest start of the operation and the
latest completion of the operation, among all model MPI processes. These maximum values are
preferred to averaged values in order to keep jitter4 time into calculation times. In the Python

4 Jitter is defined as the time separating the first and the last process when starts a coupling event

Time

Min/max definition

Average definition

En

tool, average is preferred which means that part of the formerly defined computing processes
time can be put back to En. An extreme, but realistic, example shows the difference in Figure 2.

With the BSC definition proposed, a delay in the end of calculation for a set of model MPI
processes will lead to include the jitter time, due to the model internal load imbalance, to the
waiting time, usually associated to an extra time attributed to the coupling. With the previous
min/max definition, En better represents the sum of the model external imbalance (a model is
waiting another one), with the coupling field communication time. We keep thinking that this
original definition is less confusing.

In addition, the BSC tool removes the jitter evaluation and it is impossible to have an idea of
how asynchronous the exchanges are among MPI processes.

Put it all together, the BSC preparatory work proposes to bring new information to the user
knowledge. Without jeopardising the simplicity of our tool, we think important to include the
model dependency graph and the estimate of load imbalance per coupling time step. As
explained in Section 1, we need to produce the diagnostic at the end of the simulation by the
coupled model itself, which means that the post processing tool is no longer necessary and has
to be rewritten in the OASIS library.

3- Proposed solution

To keep the load balance information simple, starting from a huge amount of raw data
(start/end of every coupling operation from every MPI process involved), necessarily implies an
intensive processing. The no-disk-access constraint requires to store this huge amount of data
and to delay the intensive analysis until the end of the simulation.

A simple evaluation of this data volume can be done that way:

(Interpolation_timings + Get_or_Put_timings) * field_nb *
single_precision_real_size * cpl_time_step_nb * MPI_processes

Interpolation or send/receive communication requires 2 float numbers for storage (timing
before and after the event). 3D fields are evaluated as a single field. In a distributed memory
algorithm, the maximum amount of data to store per node comes from only one model, since
it is unlikely to found more than one model per node. In this case, the maximum number of
fields exchanged is equal to the number of field sent/received by one model (about 30 in the
worst known case). We also evaluate to 1 or less (if OpenMP hybrid parallelism) the number of
MPI processes per core (about 200 per node, in the near future compute nodes). For a
standard climate simulation, this corresponds to a maximum volume per node of :

(2 + 2) * 30 * 4 * 10,000 * 200 ~ 1Gb

Given the current memory of our compute nodes (256Gb in the recent AMD Rome based
Météo-France supercomputer), it is acceptable but not negligible. It will be mandatory to
shorten as much as possible the analysis length to a time slice of the simulation.

In addition, since our algorithm requires minimum/maximum calculations across nodes, the
information has to be gathered and communicated to a master process. The cost of such
exchange means that, to avoid to perturb the measurement, we need to wait the end of the
simulation. One consequence is that only successful simulations could deliver the load imbalance
information (functional regression compared to the existing tool).

For gathering, we propose a pure MPI algorithm, and not to ask the users to compile their
model with the additional -qopenmp option. Considering that the load imbalance analysis is
needed during the testing period of a climate model lifetime, complex and fast algorithms are
not considered and robustness is preferred, involving global all-to-one communications to one
or several active post-processing processes. In the proposed implementation, all MPI processes
are sending their data to the component master processes, which build the final synthesis and
the corresponding plots. If memory constraints become too tight, we will implement in a second
step the analysis splitting on several master processes.

The final information has to be summarised for all components of the coupled system. But the
amount of information is already shortened by the first per-component analysis and can be
compiled easily on only one process of the coupled system.

To keep the simplicity of the delivered information, we propose to only add to the initial
En/Cn/In global information:

• performance parameters (SYPD, CHPSY) ;
• jitter accumulated for all coupling fields ;
• model dependency (En decomposition depending on the waited model).

Finally, the En/Cn/In timing (before/after) for each process of each coupled component is stored
in a netCDF file. For the same simplification reasons, this format is preferred to the direct
production of a GIF or JPG image because:

• it can be directly produced by the models, since the netCDF library is already used by
OASIS and linked with the model executable ;

• the full timeline, including all coupling event (up to 10,000) in all MPI processes (up to
10,000), must be stored in large arrays and visualised by efficient software. Such 2D
arrays are already handled in netCDF format ;

• visualisation, zoom in time or space direction and other finer analysis of a netCDF
dataset are commonly known by the majority of our community members, and can be
performed with a large variety of standard tools like Ferret, ncview, etc.

4- Implementation

The initial implementation starts from a trunk version of OASIS3-MCT v4 (22/07/2020), and a
private branch5 is built to share and possibly correct & enhance this development.

5 eric_ld

The load balancing measurement procedure can be basically divided into three parts. In a first
step, we declare all the coupling events that will be measured. This phase ends with the
allocation of the buffers that will keep in memory the starting/ending timing of each coupling
event. Secondly, measurements are done at runtime and saved into these buffers. Thirdly, the
information is gathered and processed to produce the diagnostics.

We extend the definition of coupling event (CE) to every calling of selected OASIS subroutines
that we want to visualise in the timeline. The different kind of CEs are listed in Table 1. For any
coupled component, at least two CEs are measured: the coupling setup phase
(OASIS_enddef) during initialisation and the coupling termination. Notice that this
termination phase measurement only takes into account the beginning of this phase
(MPI_barrier) since the main operation performed in this routine is the MPI_finalize
operation, that forbids further gathering/processing task needed by this tool. A third operation
can also be instrumented if applicable: the MPI partitioning declaration.

Event Send Receive Map/interpolate Output Read

Kind LB_PUT LB_GET LB_MAP LB_OUT LB_READ

Object Coupling field Coupling field Coupling field Coupling field Coupling field

Event Write restart Write
intermediate

restart

Describe MPI
partitioning

End coupling
definition phase

End coupled
simulation

Kind LB_RST LB_TRN LB_PART LB_ENDF LB_TERM

Object Coupling field Coupling field Component Component Component

Table 1: List of coupling events (CE), by kind (name of the corresponding parameter used in the
FORTRAN code). A CE can be related to a coupling field or to a component

If a component exchanges coupling fields with the coupled system, we measure the time spent
during the CEs related to these exchanges. For each coupling field, the sending or receiving can
be associated with interpolation (and/or remapping), with the writing of the coupled quantity
in a netCDF file (EXPOUT option) and with the writing of this same quantity in one or several
restart files, depending on the LAG and time transformation options. The INPUT and
OUTPUT operations (array read or write), although not producing any exchange between
components, are also instrumented and their timing can also be visualised in the timeline.

If a component is not coupled at all (parameter coupled of the oasis_init routine set to
false), our load balancing measurement procedure ignores it, since it does not call the
oasis_terminate routine which includes the final analysis procedure. For this reason, the
cost measurement of some coupled component such as IO server is impossible with our tool as
is.

This analysis can be split into four phases:

1. the information concerning the total time of the simulation (excluding uncoupled
components), in each process of the coupled system, is gathered in one master process.
We deduce the speed and the cost (global and per component) of the simulation, from

the start of the oasis_init to the end of the oasis_terminate routines (first
and last measurement of all component processes) ;

2. the CE timers are gathered in one master process per component, using the local
communicator associated to the component. A timeline netCDF file per component (see
Appendix 1) is written and contains (i) the starting/ending times of each CE, on each
process, (ii) its kind (see Table 1), (iii) the field number in the OASIS internal numbering
table, and (iv) the number of the other component exchanging the coupling field. An
example of this timeline (kind of CE) is plotted in Figure 3. The script used to produce it
with the Ferret visualisation tool [9] is given in Appendix 2 ;

3. the information in one master process per component is processed to keep the
maximum, minimum and average values across processes. This operation is done for
three quantities per coupling field and all kind of CE. To be more precise, the first
quantity is the difference between the latest and the soonest time, across processes,
when starting a CE (also called model “jitter”). The second is the difference between the
latest time when ending and the soonest time when starting a CE (mainly used to
evaluate the “waiting” time). And the last is the difference between the average values
of the ending and starting times of a CE ;

4. a synthesis is performed for all components in one master process and written out in
separated ASCII text file.

The tasks name, their purpose, the number of call for each task, the location where the task is
performed and the number of processes involved, are provided in Table 2.

The operations performed per component in the second and the third phases relies on the
existence of an MPI communicator, local to the component process. This communicator is
available in OASIS for all processes declaring the same component name. A recent evolution of
the library gives the possibility to declare independent partitions (and associated variables) for
a subset of a component processes (see Fig 2.2 of the OASIS documentation [10]). In this case,
there is no MPI communicator associated to this subset. Without the creation of new partition
wide communicators and a complex treatment of overlapping communicators, it is impossible
to provide our load balancing analysis in such case. At this development stage, taking into
account the few number of prejudiced users and our wish to keep our algorithm as simple as
possible, we prefer to stop the load imbalance measurement procedure in case of multiple
different partitioning per component.

The information produced by our tool consists in timelines (netCDF format), saved in one file
per component, and in a text file synthesis of coupling related key parameters proposed in
Section 3. The header of a simple three components timeline is given in Appendix 2. The full
output of the analysis produced for the same three component coupled simulation is proposed
in Appendix 3.

Task Purpose # calls Calling routine Coupled
processes
involved

Initialisation
(oasis_lb_init)

Take measurement of the simulation
start

1 oasis_init_comp all

1st array allocation
(oasis_lb_allocate)

Allocate the timer header arrays 1 oasis_coupler_setup
or oasis_enddef

all

2nd array allocation
(oasis_lb_define)

Allocate the timer arrays depending
on the operation # associated to
the coupling fields

coupling
fields

oasis_coupler_setup All processes
actually

exchanging
coupling fields

Performance
measurement

(oasis_lb_measure)

Take elapsed timing before and after
a CE and store in the allocated
arrays

CE Any routine which
hosts a CE

All processes
involved in a

CE

Total time evaluation
(in oasis_lb_print)

Measure of the simulation end and
produce speed/cost information per
component

1 oasis_terminate all

Components
time line

(in oasis_lb_print)

Gather timers information and
produce one timeline per component

Summary per
component

(in oasis_lb_print)

Produce summary numbers per
component

Global summary
(in oasis_lb_print)

Gather component information to
produce one global analysis and
evaluate the total time spent to
perform the load balancing analysis

Table 2: Summary of the load balancing analysis procedure

The synthesis numbers delivered by this analysis are the following:

• the total time (s) of the simulation, from the beginning of the first process calling
oasis_init, to the end of the last process calling oasis_terminate ;

• the corresponding speed (SYPD) and cost (CHPSY) of the coupled system ;
• the total time (s) and corresponding cost (CHPSY) per component (same measurement

definition) ;
• the time (s) spend in ‘waiting’ coupled operations (receiving and sending coupling fields)

and the ‘computing’ time. This time is defined as the difference between the total loop
time and the waiting time. The total loop time is not the total time, but the time spent in
the coupling time loop only, excluding the first and the last coupling time steps.

In addition, detailed information is provided for each component:

• a distribution of the “receive” part of the waiting time (s) per corresponding source
components (or counterparts) ;

• the spread of the time measurement (s) when sending/receiving operation are started
between all processes (component ‘jitter’) ;

• the ratio (%) of the waiting time compared to the total time ;

• the ratio (%) of this waiting time plus all other OASIS runtime coupling field operations
with averaged value (output, input, mapping/interpolation, restarts writing).

The time spent during these OASIS runtime coupling field operations is also detailed, per
component, with average values across component processes, and the corresponding jitter
when starting the operations, as follows:

• the mapping/interpolation operation timings (s) ;
• the netCDF output operation timings (s) launched for the namcouple options

OUTPUT, EXPOUT or during restart writings ;
• the netCDF restart writings timings (s) only.

Finally, two informations are provided to check the performance and the validity of the load
balancing analysis itself:

• the duration (s) of the load balancing synthesis phase itself ;
• the spread (s) of time clocks measured after an MPI_barrier call, to check the coherence

of the clock time between the computing nodes.

Only one process per component is used to gather the whole timing array and to write the
timeline. This arrays is also used to perform maximum/minimum/average operations in a single
FORTRAN command. A less memory-consuming (but slower and more complex)
implementation will be proposed if this solution does not fit the community requirements.

Figure 3: Timeline of kind of CE (x axis for elapsed seconds, y axis for MPI processes),
3 components involved (component 1 : MPI processes 1 to 62; component 2 : MPI
processes 63 to 125; component 3, no fields exchanged : MPI processes 126 to 128),
initialisation and termination phases in pink, field reception in green, interpolation &
mapping in yellow, coupling field netCDF output in orange, netCDF restart file writing
in brown

5- Validation

The same tutorial example used at Section 3 is slightly modified to exchange coupling fields on
regular global grids and parametrisable resolutions, and to add a third component, which does
not exchange any field with the others. The two other components are conserved but included
in the same executable. The simulation length is extended to better visualise the exchanges in
the timeline. The sequence of send/receive, output and restart operations, together with
initialisation and termination phases can be seen in Figure 3.

The corresponding summarised numbers are provided in Appendix 3 and show good
agreement with this timeline.

Following the usual procedure [11] to detect a potential side effect of our implementation on
other OASIS functions, the load balancing instrumentation is successfully tested on a set of local
computers (see Table 3), with and without enabling the load balancing analysis.

Computer Compiler
Dell Ivy Bridge Core i5-3450 PGI 18.7
Dell Ivy Bridge Core i5-3470 GNUFortran 7.3.1
Lenovo Broadwell Xeon E5-2680-v3 Intel 15.2.164
Lenovo Skylake Xeon Gold 6140 Intel 18.0.1.163
Table 3: List and characteristics of computers used by the automatic OASIS test
procedure

The final analysis itself is instrumented to measure its computing performance. Only a fraction
of second is necessary to perform the analysis for a single node parallelism (128 processes) of
our toy model operated at a global regular ½ degree horizontal resolution and including about
30 CEs per component.

Tests are extended on “belenos” to better estimate the scaling properties of our algorithm.
In a first step, we increase the parallelism of the coupled components, until using half of the
available nodes (512). Figure 4-left clearly shows that the load balancing analysis (i) can be
performed without memory or disk access issues using half of one of the most powerful
machine in Europe, and (ii) its cost is reasonable (less than a few seconds).

In a second step, for a given MPI decomposition (512 processes for each two components), we
increase the number of CEs (i.e. the simulation length) until more than 140,000, which
corresponds to a yearly simulation coupling 15 fields every hour. We see on Figure 4-right that
the maximum cost of the load balance analysis is not bigger than previously. Our
implementation makes possible the simultaneous processing of the new load balance analysis
and the original one (lucia), which saves the timing traces on disk at runtime. In our case
(Figure 4), the lucia cost is not as high, but one must remember than this comparison
excludes the lucia post-processing phase and that the lucia traces are limited to 20
processes per component.

Figure 4: Time to solution (s) of the load balancing algorithm, and the extra time needed when adding the lucia
analysis, as a function of one component parallelism (# of computing cores) for a simulation of 17 CEs (left), and as
a function of the # of simulation CEs for coupled components using 512 cores (4 nodes) (right), measured during 2
test simulations

Another possible blocking issue is the time spent to visualise the timeline. We produced the
timeline corresponding to the simulations described in Figure 4-right, using the visualisation tool
Ferret (without X server, “batch” mode6) on our legacy Intel Harpertown (2007)
workstation. The image produced is already meaningless with the shortest simulation, because
too many information is displayed in the plot. A sub sampling (across processes or CEs) will be
mandatory to any user willing to use this visualisation to carefully understand the sequence and
the organisation of the CEs. Following this standard requirement, the plot will take less than a
few seconds on any up-to-date workstation. Saying that, Figure 5 shows that the time spent to
create the plot rapidly increases with the number of CEs, but stays below 10s for plots that
already include far too much information.

Figure 5: Time needed to visualise the timelines
produced with the same simulations than in Figure 4-
right

6 ferret -batch timeline.gif -script timeline_production.jnl

The Python based matplotlib visualisation library has a major advantage compared to
Ferret: an interactive zoom function (either from the X11 windows displayed, or included in
any reader of the vector PDF file that the library can produce). This zoom makes possible the
careful examination of one piece of the trace in a large simulation. With our same Harpertown
CPU, the production of a PNG file seems slower than the Ferret GIF production. A production
in PDF format is even slower7. We did not compare X11 display performance with Ferret and
matplotlib but it is clear that, in both case, it can be very painful or even impossible to
visualise large series. A pre-selection of time slices seems mandatory to reduce the displaying
time. For a detailed documentation of this tool, see [13].

Figure 6 : same kind of timeline than Figure 3, but plotted with matplotlib, for the full simulation trace (left)
and a process/time slice (right)

6- Conclusion

This implementation proposes an alternate version to the current tool for load balancing
measurement in OASIS coupled models (lucia). We avoid the production, which could
perturb the measurement, and the post-processing analysis of trace files. We deliver at low
cost a larger set of summarised quantities that can help to better understand the origin of any
coupling extra cost. Moreover, we provide the timeline, for every process involved in the
coupling, of every CEs, such as coupling field sending or receiving, but also interpolation, file
reading or writing, in addition to the coupling initialisation or termination phases. These
timelines are available in a netCDF format file that can be easily and quickly handled with
commonly used visualisation tools. To be able to keep the implementation as simple as possible
(~ 700 lines), we limit the analysis to a component (and not partition) per-basis, that requires
additional memory on each component master process approximately equal to the size of a
single precision array containing the number of CE x the number of MPI process. This means
that users will have to restrain the analysis to relatively short simulations or reasonably MPI-
parallel models to avoid memory overf low.

7 For file production, we were careful not to call the plt.show matplotlib function, that is the only one
which requires the use of the slowing X11 server. For installation, notice that two extra Python3 packages
have to be available : netcdf4 and, to use the provided Python script, json or yaml.

Acknowledgements
Computing resources were provided by Météo-France and the German Climate Computing Centre (DKRZ). The
authors wish to acknowledge use of the Ferret and matplotlib programs for analysis and graphics in this report. Ferret
is a product of NOAA's Pacific Marine Environmental Laboratory. Matplotlib is a Sponsored Project of
NumFOCUS, a 501(c)(3) non profit charity in the United States. The project IS-ENES3 has received funding
from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 824084.
The authors are in Sophie Valcke’s debt for having reviewed this document.

References

[1] Balaji, V., Maisonnave, E., Zadeh, N., Lawrence, B. N., Biercamp, J., Fladrich, U., Aloisio, G.,
Benson, R., Caubel, A., Durachta, J., Foujols, M.-A., Lister, G., Mocavero, S., Underwood, S., and
Wright, G., 2017: CPMIP: Measurements of Real Computational Performance of Earth System
Models in CMIP6 , Geosci. Model Dev., 46, 19-34, doi:10.5194/gmd-10-19-2017

[2] Fuhrer, O., Chadha, T., Hoefler, T., Kwasniewski, G., Lapillonne, X., Leutwyler, D., Lüthi, D.,
Osuna, C., Schär, C., Schulthess, T. C., and Vogt, H., 2018 : Near-global climate simulation at 1
km resolution: establishing a performance baseline on 4888 GPUs with COSMO 5.0, Geosci.
Model Dev., 11, 1665-1681, https://doi.org/10.5194/gmd-11-1665-2018

[3] Maisonnave, E. and Caubel, A., 2014: LUCIA, load balancing tool for OASIS coupled systems,
Technical Report, TR/CMGC/14/63, SUC au CERFACS, URA CERFACS/CNRS No1875, France

[4] Maisonnave, E. and Valcke, S., 2010: OASIS Dedicated User Support 2009, Annual report,
Technical Report, TR/CMGC/10/26, Cerfacs, France

[5] Maisonnave, E., 2020: Ocean/Biogeochemistry macro-task parallelism in NEMO , Working
Note, WN/CMGC/20/31, CECI, UMR CERFACS/CNRS No5318, France

[6] Maisonnave, E., 2017: IS-ENES2 HighRes ESM performance resulting from OASIS
updatesTechnical Report, TR/CMGC/17/14, CECI, UMR CERFACS/CNRS No5318, France

[7] Acosta, M., Yepes-Arbos, X., Valcke, S., Maisonnave, E., Serradell, K., Mula-Valls, O. and
Doblas-Reyes, F., 2016: Performance Analysis of EC-Earth coupling, Earth Science Dpt, BSC,
Spain

[8] Maisonnave, E. and Masson, S., 2019: NEMO 4.0 performance: how to identify and reduce
unnecessary communications , Technical Report, TR/CMGC/19/19, CECI, UMR CERFACS/CNRS
No5318, France

[9] http://ferret.pmel.noaa.gov/Ferret/

[10] Craig, A., Valcke, S. and Coquart, L., 2017: Development and performance of a new version
of the OASIS coupler, OASIS3-MCT_3.0, Geosci. Model Dev., 10, pp 3297-3308,
https://doi.org/10.5194/gmd-10-3297-2017

[11] Coquart, L., d'Ast , I. and Valcke, S., 2017: Buildbot : Le logiciel utilisé pour compiler et tester
automatiquement les développements réalisés dans le coupleur OASIS3-MCT, Technical Report,
TR-CMGC-17-85, CECI, UMR CERFACS/CNRS No5318, France

[12] Hunter, J. D., 2007: Matplotlib: A 2D Graphics Environment, Computing in Science &
Engineering, vol. 9, no. 3, pp. 90-95

[13] Piacentini, A. and Maisonnave, E., 2020: Interactive visualisation of OASIS coupled models
load imbalance, TR/CMGC/20/177, CECI, UMR CERFACS/CNRS No5318, France

https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.5194/gmd-10-3297-2017
http://ferret.pmel.noaa.gov/Ferret/
https://cerfacs.fr/wp-content/uploads/2019/01/GLOBC-TR_Maisonnave-Nemo-2019.pdf
https://cerfacs.fr/wp-content/uploads/2019/01/GLOBC-TR_Maisonnave-Nemo-2019.pdf
https://www.cerfacs.fr/wp-content/uploads/2017/02/GLOBC-TR-MAISONNAVE-ISENES2-FEVRIER-2017.pdf
https://www.cerfacs.fr/wp-content/uploads/2017/02/GLOBC-TR-MAISONNAVE-ISENES2-FEVRIER-2017.pdf
https://cerfacs.fr/wp-content/uploads/2020/02/GlobC-TR-Maisonnave-2031-1.pdf
https://www.cerfacs.fr/globc/publication/technicalreport/2010/2009_OUS_report.pdf
https://www.cerfacs.fr/globc/publication/technicalreport/2014/lucia_documentation.pdf
https://doi.org/10.5194/gmd-11-1665-2018
http://www.geosci-model-dev.net/10/19/2017
http://www.geosci-model-dev.net/10/19/2017

Appendix 1: Header of a netCDF timeline f i le

The described component has produced 36 CEs on 62 processes

netcdf timeline_ocean {
dimensions:

nx = 36 ;
ny = 62 ;

variables:
float timer_strt(ny, nx) ;

timer_strt:long_name = "Start of OASIS event" ;
timer_strt:units = "seconds since OASIS initialisation" ;

float timer_stop(ny, nx) ;
timer_stop:long_name = "End of OASIS event" ;
timer_stop:units = "seconds since OASIS initialisation" ;

int kind(nx) ;
kind:long_name = "Kind of OASIS event" ;
kind:standard_name = "Kind" ;
kind:flag_values = "0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10" ;
kind:flag_meanings = "UNDF PUT GET MAP OUT READ RST TRN

PART ENDF TERM" ;
kind:comment = "undefined send receive map file_output

file_input restart_writing partial_restart_writing partition_def
end_def terminate" ;

int field(nx) ;
field:long_name = "OASIS field name ID" ;
field:standard_name = "Field" ;
field:comment = "Sequence follows namcouple order" ;

int component(nx) ;
component:long_name = "Counterpart coupled component

ID" ;
component:standard_name = "Component" ;
component:comment = "Sequence follows component MPI rank

in global communicator" ;

// global attributes:
:source = "OASIS coupler instrumented for load balancing

analysis" ;
:title = "OASIS event (nx) timeline on every MPI process

(ny)" ;
:component_id = 2 ;

}

Appendix 2 : FERRET script for timeline visualisation
To visualise three timelines (kind of CE) coming from three components of a coupled system

use timeline_pam_.nc
use timeline_pim_.nc
use timeline_poum.nc

LET YRECTANGLE = YSEQUENCE({0,0,1,1})

let comm1_size = `timer_strt[d=1],RETURN=jsize`
let comm2_size = `timer_strt[d=2],RETURN=jsize`
let comm3_size = `timer_strt[d=3],RETURN=jsize`
let totcommsize = `comm1_size`+`comm2_size`+`comm3_size`

let YPTS1 = I[d=1,gx=kind]*0
let YPTS2 = I[d=2,gx=kind]*0+`comm1_size`
let YPTS3 = I[d=3,gx=kind]*0+`comm1_size`+`comm2_size`

let dim_1 = YSEQUENCE({1,0,0,1})
let dim_2 = YSEQUENCE({0,1,1,0})

let to_plot1 if kind ge 8 then 0 else kind
let to_plot if to_plot1 eq 7 then 5 else to_plot1

!let to_plot = field
!let to_plot = component

let min2min =
MIN(MIN(timer_strt[i=@min,j=@min,d=1],timer_strt[i=@min,j=@min,d=2]),timer_strt[
i=@min,j=@min,d=3])
let max2max =
MAX(MAX(timer_stop[i=@max,j=@max,d=1],timer_stop[i=@max,j=@max,d=2]),timer_stop[
i=@max,j=@max,d=3])

POLYGON/xlim=`min2min`:`max2max`/ylim=1:`totcommsize`/nolab
timer_strt[d=1,j=1]*dim_1+timer_stop[d=1,j=1]*dim_2, YRECTANGLE+YPTS1+1,
to_plot[d=1]

repeat/RANGE=2:`comm1_size`/NAME=index
(POLYGON/xlim=`min2min`:`max2max`/ylim=1:`totcommsize`/ov/nolab/lev
timer_strt[j=`index`,d=1]*dim_1+timer_stop[j=`index`,d=1]*dim_2,
YRECTANGLE+YPTS1+`index`, to_plot[d=1]; PPL SHASET RESET)

repeat/RANGE=1:`comm2_size`/NAME=index
(POLYGON/xlim=`min2min`:`max2max`/ylim=1:`totcommsize`/ov/nolab/lev
timer_strt[d=2,j=`index`]*dim_1+timer_stop[d=2,j=`index`]*dim_2,
YRECTANGLE+YPTS2+`index`, to_plot[d=2]; PPL SHASET RESET)

repeat/RANGE=1:`comm3_size`/NAME=index
(POLYGON/xlim=`min2min`:`max2max`/ylim=1:`totcommsize`/ov/nolab/lev
timer_strt[j=`index`,d=3]*dim_1+timer_stop[j=`index`,d=3]*dim_2,
YRECTANGLE+YPTS3+`index`, to_plot[d=3]; PPL SHASET RESET)

Appendix 3: Load imbalance analysis (summarised text information)

 Coupled model simulation time (s): 41.527
 (coupled components only)

 Speed (SYPD) : 379707.221
 Cost (CHPSY) : 0.008

 Model ocean simulation time : 41.527
 cost (CHPSY): 0.004
 Model atmosphere simulation time : 41.525
 cost (CHPSY): 0.004
 Model ioserver simulation time : 41.522
 cost (CHPSY): 0.000

 Load balance analysis

 Model / Computing time / Waiting time

 ocean / 7.625 / 1.818
 atmosphere / 9.742 / 0.001
 ioserver / 0.000 / 0.000

 Additional information

 ocean

 Specific oasis_get time
 (n/a if no oasis_get)
 from model atmosphere
 : 1.818

 Total jitter : 0.135

 Partial coupling cost (%) : 19.25
 Partial coupling cost including OASIS operations (%) : 34.60

 OASIS Operations :

 Total mapping/interpolation : 0.642
 with spread : 0.082
 Total Netcdf output (OUTPUT+EXPOUT+restart): 0.807
 with spread : 0.192
 including restart : 0.000
 with spread : 0.000

 atmosphere

 Specific oasis_get time
 (n/a if no oasis_get)
 from model ocean
 : 0.000

 Total jitter : 0.196

 Partial coupling cost (%) : 0.01
 Partial coupling cost including OASIS operations (%) : 18.33

 OASIS Operations :

 Total mapping/interpolation : 0.324
 with spread : 0.062
 Total Netcdf output (OUTPUT+EXPOUT+restart): 1.461
 with spread : 0.339
 including restart : 0.165
 with spread : 0.007

 ioserver

 Specific oasis_get time
 (n/a if no oasis_get)

 Total jitter : 0.000
 Partial coupling cost (%) : 0.00
 Partial coupling cost including OASIS operations (%) : 0.00

 OASIS Operations :

 Total mapping/interpolation : 0.000
 with spread : 0.000
 Total Netcdf output (OUTPUT+EXPOUT+restart): 0.000
 with spread : 0.000
 including restart : 0.000
 with spread : 0.000

 Total time of this load balancing analysis:
 : 0.228

	1- Rationale
	2- BSC exploratory work
	3- Proposed solution
	4- Implementation
	5- Validation
	6- Conclusion
	References
	Appendix 1: Header of a netCDF timeline file
	Appendix 2 : FERRET script for timeline visualisation
	Appendix 3: Load imbalance analysis (summarised text information)

