
OASIS3-MCT_4.0	Timing	Study	with	MCT	2.10.beta1	
	

Tony	Craig,	Sophie	Valcke	
March	2018	

	
CECI,	Université	de	Toulouse,	CNRS,	CERFACS,	Toulouse,	France		

TR-CMGC-18-38		
	
	
Introduction	
	
This	document	summarizes	the	results	from	a	timing	exercise	carried	out	in	January	
2018	on	the	tc17b	branch	of	OASIS3-MCT.		The	modifications	on	this	branch	will	be	
included	in	the	OASIS3-MCT_4.0	release.		The	motivation	is	to	document	
performance	differences	between	MCT	2.8	and	MCT	2.10.beta1	available	from	the	
MCT	repository	in	September	2017	for	a	high-resolution	case	running	on	a	high	
number	of	cores,	as	one	of	the	most	challenging	cases	for	OASIS3-MCT	and	MCT.		
MCT	2.10.beta1	includes	a	refactoring	of	the	router	initialization	in	MCT	that	
specifically	addresses	initialization	performance	at	high	numbers	of	cores.	At	the	
same	time,	timing	tests	were	carried	out	for	a	couple	of	other	new	OASIS3-MCT	
features	and	those	results	are	also	documented.		
		
Executive	Summary	
	
The	main	conclusions	from	testing	the	relatively	high-resolution	IS-ENES2	
bechmark	case	(3000	x	3000	grid	points)	on	1600	and	3600	cores	per	component	
on	Météo-France	Bullx	“beaufix”	are:	

• Compared	to	MCT	2.8,	MCT	2.10.beta1	improves	by	one	to	two	orders	of	
magnitude	the	performance	of	the	initialization	of	the	MCT	routers	for	this	
test	case.		This	is	particularly	true	for	complex	decompositions	and	
rearrangements.		The	routers	define	the	rearrangement	patterns	for	the	
sparse	matrix	multiply	(see	section	3),	and	the	rearrangement	associated	
with	coupling	data	between	the	source	and	target	processes	(see	section	4).	
This	reduces	the	total	initialization	time	in	OASIS3-MCT	from	O(1-3	minutes)	
to	O(10-20	seconds)	for	the	high	resolution	case	(3000x3000	grid	points)	on	
3600	cores	per	component.		

• The	remapping	cost	with	the	new	“decomp_wghtfile”	method,	using	the	
remapping	weights	to	define	the	mapping	decomposition,	is	generally	faster	
than	the	original	“decomp_1d”	method	at	runtime.		However,	the	
decomp_wghtfile	also	takes	longer	to	initialize,	as	expected.		The	extra	
initialization	cost	is	partly	due	to	the	fact	that	the	mapping	weight	file	has	to	
be	read	twice	for	the	decomp_wghtfile	option.		The	decomp_wghtfile	option	
also	results	in	increased	cost	for	the	initialization	of	the	mapping	
decomposition	of	the	target	grid	on	the	sources	tasks,		the	sparse	matrix	
initialization,	and	for	the	initialization	of	the	router	between	the	mapping	



decomposition	and	the	target	decomposition.		These	additional	costs	are	all	
during	initialization	and	created	because	of	the	complexity	of	the	
decomp_wghtfile	decomposition	compared	to	the	1d	decomposition.		
However,	while	those	increased	costs	can	be	relatively	high,	MCT	2.10.beta1		
has	mitigated	the	absolute	cost	to	O(seconds).		So	in	general,	those	costs	will	
usually	be	small	enough	that	for	production	run	lengths,	it	will	be	worth	
spending	extra	time	during	initialization	to	improve	the	run	time	
performance.	

• The	current	tests	suggest	that	the	original	way	to	read	the	mapping	file	
(“orig”,	where	the	weights	read	by	the	model	master	task	are	then	broadcast	
to	all	other	tasks	and	each	task	then	saves	the	weights	that	will	be	applied	to	
its	grid	points)	is	faster	than	the	“ceg”	option	(where	the	master	task	reads	
the	weights	and	then	identifies	to	which	other	task	each	weight	should	be	
sent	and	effectively	sends	only	those).	But	both	perform	similar	and	absolute	
times	are	reasonable.	

	
As	always,	the	optimal	OASIS3-MCT	performance	settings	may	vary.		Each	coupled	
system	will	perform	differently	depending	on	the	coupling	sequence,	number	of	
coupling	fields,	resolution,	number	of	tasks,	machine,	and	so	forth,	and	each	coupled	
system	should	evaluate	the	impact	of	the	different	options	offered	by	the	coupler	on	
its	overall	performance.	
	
	
Overview	
	
The	VHR	configuration	of	the	IS-ENES2	coupling	technology	benchmarks	(Valcke	et	
al.	2017)	was	run	on	Météo-France	Bullx	“beaufix”,	coupling	two	components	of	size	
3000x3000	running	concurrently	on	different	MPI	tasks	and	different	cores	using	
the	intel	16.1.150	compiler	and	the	intelmpi	5.1.2.150	MPI	library.		In	this	case,	the	
decompositions	on	the	two	components	were	the	same,	a	2d	decomposition	of	
square	blocks.	The	runs	were	done	with	MCT	2.8	and	MCT	2.10.beta1	with	either	
1600	or	3600	MPI	tasks	per	component.				

For	this	set	of	tests	the	remapping	(also	known	as	interpolation	or	regridding)	was	
always	performed	on	the	source	component	tasks.		So	at	run	time,	a	sparse	matrix	
multiplication	using	the	mapping	weights	will	be	performed	first	to	transform	the	
source	coupling	field	from	its	source	decomposition	to	the	mapping	decomposition	
of	the	target	grid	on	the	source	tasks.		Then	the	coupling	field	will	be	rearranged	
from	that	mapping	decomposition	on	the	source	tasks	to	the	target	decomposition	
on	the	target	tasks.		In	practice,	remapping	can	also	be	done	on	the	target	tasks	after	
coupling	the	data	from	the	source	to	the	target	processes,	and	while	the	timings	
would	be	different,	the	overall	conclusions	should	be	similar.	

For	these	timings,	different	remapping	options,	some	of	them	already	in	OASIS3-
MCT_3.0	(Craig	et	al.	2017)	and	some	of	them	available	in	the	next	OASIS3-MCT_4.0	
release,	were	considered.	Reading	the	mapping	weight	file	was	done	with	both	the	



“orig”	or	“ceg”method.	In	both	methods,	the	weights	are	read	in	chunks	by	the	
model	master	task.	With	the	orig	option,	the	weights	are	then	broadcast	to	all	other	
tasks	and	each	task	then	saves	the	weights	that	will	be	applied	to	its	grid	points.	
With	the	ceg	option,	the	master	task	reads	the	weights	and	then	identifies	to	which	
other	task	each	weight	should	be	sent.		Then	a	series	of	exchanges	are	carried	out	
with	the	root	task	sending	each	other	task	just	the	weights	needed	by	that	other	task.	
The	orig	method	sends	much	more	data	but	is	more	parallel,	while	the	ceg	method	
does	most	of	the	work	on	the	master	task	but	less	data	is	communicated.	

The	mapping	decomposition	was	tested	with	both	the	original	“decomp_1d”	or	the	
new	optimized	“decomp_wghtfile”	method	that	will	be	available	in	OASIS3-MCT_4.0.	
To	perform	the	remapping	on	the	source	processes,	OASIS3-MCT	creates	a	
“mapping	decomposition”	of	the	target	grid	on	the	source	task.	This	mapping	
decomposition	is	somewhat	arbitrary	and	two	options	have	been	implemented	up	
to	now,	decomp_1d	or	decomp_wghtfile.		In	decomp_1d,	each	target	grid	point	is	
assigned	to	a	source	task	in	a	trivial	one	dimensional	approach.		With	
decomp_wghtfile,	a	more	optimal	mapping	decomposition	can	be	created	based	on	
the	information	from	the	mapping	weight	file	such	that	a	target	grid	point	will	be	
associated	with	the	source	task	which	holds	the	source	grid	points	needed	for	the	
calculation	of	its	interpolated	value.		

The	timings	done	in	these	tests	measure	various	initialization	and	runtime	costs	
including	MCT	performance,	the	cost	to	read	the	mapping	file,	the	runtime	sparse	
matrix	multiply,	and	the	total	run	loop	cost	(excluding	the	first	and	last	coupling	
period).		Some	additional	timers	were	turned	on	to	carry	out	these	timing	with	
barriers	as	needed.		The	main	goal	was	to	measure	individual	kernels	of	the	
initialization	cost.		Times	measured	represent	the	maximum	time	across	all	tasks	for	
that	kernel.		For	the	1600	task	case,	each	case	was	run	twice	and	in	all	cases,	both	
component1	and	component2	timers	were	saved.		Because	most	of	the	timing	is	in	
I/O	or	MPI	operations,	significant	timing	variation	is	seen	in	some	timers	run-to-run.		
This	can	be	caused	by	run-to-run	differences	in	nodes	allocated	or	contention	on	the	
file	system	or	interconnect.		In	general,	the	best	times	measured	between	different	
runs	are	presented,	but	variations	and	their	impact	on	the	conclusions	are	also	
sometimes	noted.		To	a	large	degree,	the	timing	difference	being	measured	between	
features	is	much	larger	than	the	run-to-run	variability.	
For	the	current	tests,	the	mapping	is	done	on	the	source	side	by	rearranging	the	
data	from	the	source	decomposition	to	the	mapping	decomposition	and	then	
applying	the	weights.		In	this	VHR	benchmark	case	with	identical	grids	on	both	sides,	
the	mapping	file	consists	of	all	1s	with	1	weight	per	grid	cell.		This	is	a	particularly	
trivial	mapping,	but	is	useful	for	timing.		So,	in	these	cases,	data	on	the	source	side	is	
rearranged	from	the	source	decomposition	onto	the	mapping	decomposition,	the	
mapping	weights	are	applied,	then	the	data	is	rearranged	again	from	the	mapping	
decomposition	to	the	target	component	2d	block	decomposition.		This	configuration	
is	a	clean	test	case	for	timing	purposes.		In	practice,	if	two	components	on	the	same	
grid	were	being	coupled	with	an	identity	matrix	remapping,	the	remapping	step	
would	be	excluded	completely	for	a	production	run.	



Tables	are	presented	below	and	the	timing	output	headings	are	defined	as	follows	
	

• “part_create”	is	the	cost	to	initialize	the	mapping	decomposition	of	the	target	
grid	on	the	source	tasks	(with	either	decomp_1d	or	decomp_wghtfile	
options).		In	the	MCT	jargon,	this	is	the	cost	to	generate	an	MCT	global	seg	
map	(gsmap)	for	the	mapping	decomposition.	

• “mapfile	read”	is	the	cost	to	read	the	mapping	weights	file	using	the	orig	or	
ceg	algorithm.			

• “sminit”	is	the	MCT	sparse	matrix	initialization	cost.		This	cost	is	largely	
determined	by	the	cost	to	compute	the	router	between	the	source	
decomposition	and	the	mapping	decomposition	to	support	rearrangement	in	
the	sparse	matrix	multiplication	on	the	source	tasks.		

• “router	init”	is	the	cost	associated	with	computing	a	router	between	the	
mapping	decomposition	of	the	target	grid	on	the	source	tasks	and	the	target	
decomposition	of	the	target	grid	on	the	target	tasks.	

• “avmult”	is	the	sparse	matrix	multiply	cost	during	the	run	loop	and	includes	
both	the	rearrangement	cost	and	the	multiply-add	cost.	

• “run	loop”	is	the	total	time	spent	coupling	excluding	the	first	and	last	
coupling	period.	

	
Timing	results	are	broken	down	into	smaller	pieces	to	highlight	various	features.	
	
1. Initialization	of	the	mapping	decomposition	(part_create)	
	
The	table	below	shows	the	times	to	initialize	the	mapping	decomposition	of	the	
target	grid	on	the	source	tasks	via	a	call	to	MCT.		In	the	decomp_1d	case	(1d),	this	is	
a	trivial	one-dimensional	mapping	with	one	segment	per	task.	For	decomp_wghtfile	
(wghtfile),	the	mapping	decomposition	will,	in	this	case,	be	similar	to	the	two-
dimensional	square	block	decomposition	associated	with	the	source	model	
decomposition.		This	decomposition	is	more	complicated	to	describe	and	initialize	
within	the	MCT	gsmap.		The	gsmap	is	initialized	by	having	each	task	specify	the	
gridcells	that	are	on	that	task.		The	gsmap	then	aggregates	the	information	across	
tasks	so	every	task	has	the	complete	decomposition	information	of	the	entire	grid.		
MPI	is	used	to	aggregate	the	information.	
	
tasks	per	component	 setting	 part_create	time	(s),	

MCT	2.8	
part_create	time	(s),	
MCT	2.10.beta1		

1600	 1d,	ceg	 0.0282	 0.0288	
1600	 1d,	orig	 0.0283	 0.0541	
1600	 wghtfile,	ceg	 0.8984	 0.8808	
1600	 wghtfile,	orig	 0.8833	 0.8817	
3600	 1d,	ceg	 0.0719	 0.0746	
3600	 1d,	orig	 0.1140	 0.0751	
3600	 wghtfile,	ceg	 0.9725	 0.9967	
3600	 wghtfile,	orig	 0.9963	 0.9686	
	



• The	total	cost	to	initialize	the	gsmap	is	less	than	1	second	in	all	cases.	
• The	time	to	initialize	the	mapping	decomposition	for	decomp_wghtfile	is	10x-

40x	more	expensive	than	for	decomp_1d	because	of	the	extra	complexity	of	
the	decomposition.		This	is	likely	caused	by	the	MPI	cost	of	sending	many	
more	shorter	messages	compared	to	the	decomp_1d	case	and	handling	
multiple	segments	per	task.	

• The	cost	to	initialize	the	mapping	decomposition	on	3600	tasks	is	4x	more	
expensive	for	decomp_1d	and	10%	more	expensive	for	decomp_wghtfile	
compared	to	the	cost	on	1600	tasks.			It	is	not	surprising	the	cost	increases	as	
tasks	increase.		The	fact	that	decomp_wghtfile	is	already	so	much	more	
expensive	than	decomp_1d	must	play	a	role	in	the	relative	extra	cost	of	3600	
vs	1600.	

• There	is	no	difference	in	the	cost	to	initialize	the	gsmap	between	MCT	2.8	
and	MCT	2.10.beta1.	

• There	is	no	difference	in	cost	between	ceg	and	orig,	as	expected,	as	the	map	
reading	algorithm	plays	no	role	in	this	kernel.	

	
2. Reading	of	the	Mapping	File	(mapfile	read)	
	
The	table	below	shows	the	times	for	reading	the	mapping	file.	As	noted	above,	
decomp_1d	results	in	a	simpler	mapping	decomposition	compared	to	
decomp_wghtfile.		In	addition,	to	determine	the	decomp_wghtfile	decomposition,	
the	weight	file	has	to	be	read	separately	to	create	the	mapping	decomposition.		Once	
the	mapping	decomposition	is	created,	the	weights	are	assigned	to	tasks	for	use	in	
the	sparse	matrix	multiply.		In	the	reading	kernel,	the	file	is	read	on	the	root	
processor	in	chunks	of	100,000	weights	at	a	time.	In	the	orig	method,	the	mapping	
weights	are	broadcast	to	all	tasks	then	each	task	stores	just	the	weights	that	it	uses.		
In	ceg,	the	root	task	figures	out	which	task	owns	each	weight,	then	a	series	of	
send/recvs	are	setup	to	transfer	weights	to	each	task.	The	kernel	involves	both	I/O	
and	MPI,	but	the	I/O	cost	should	not	fundamentally	change	in	different	runs	for	
different	cases,	except	due	to	run-to-run	variability	as	that	algorithm	is	fixed.		
	
tasks	per	component	 setting	 mapfile	read	(s),		

MCT	2.8	
mapfile	read	(s),		
MCT	2.10.beta1		

1600	 1d,	ceg	 1.3385	 1.3844	
1600	 1d,	orig	 1.0869	 1.3264	
1600	 wghtfile,	ceg	 2.1584	+	2.1282	 2.1321	+	2.1929	
1600	 wghtfile,	orig	 1.2058	+	2.2667	 1.1578	+	1.7497	
3600	 1d,	ceg	 2.6334	 2.5936	
3600	 1d,	orig	 2.2354	 1.0812	
3600	 wghtfile,	ceg	 2.2390	+	1.6841	 2.1922	+	2.4315	
3600	 wghtfile,	orig	 1.1740	+	1.8700	 1.1276	+	1.2980	
	

• The	total	cost	to	read	and	distribute	the	weights	is	less	than	about	5	seconds	
total	for	all	configurations	tested	even	for	the	case	where	the	file	is	read	
twice.	



• There	is	no	clear	difference	in	the	cost	of	a	single	reading	for	the	decomp_1d	
vs	decomp_wghtfile	settings.		There	is	quite	a	bit	of	variability	in	the	timing	
results.		But	overall,	the	decomp_wghtfile	is	always	more	expensive	because	
the	mapping	file	has	to	be	read	twice	(once	before	the	mapping	
decomposition	taking	into	account	the	source	decomposition	and	once	taking	
into	account	the	mapping	decomposition	after	it	is	defined)	instead	of	only	
once	for	decomp_1d.	

• In	these	cases,	orig	is	up	to	2x	faster	than	ceg,	but	that	will	ultimately	depend	
on	the	configuration.		When	there	are	lots	of	tasks,	orig	might	be	faster	than	
ceg.		When	there	are	fewer	tasks	and	lots	of	data,	ceg	should	be	faster.		That	
trend	might	exist	in	the	data	above,	although	it's	a	bit	fuzzy.	

• There	is	no	difference	in	timing	for	reading	the	mapping	file	for	different	
MCT	versions.			This	is	expected,	as	MCT	is	not	used	for	the	mapfile	read.	

	
3. Sparse	Matrix	Initialization	(sminit)	
	
The	sparse	matrix	initialization	happens	after	the	weights	are	read	and	distributed.		
At	that	point,	information	about	the	source	and	mapping	decomposition	and	the	
weights	is	fed	into	the	MCT	sparse	matrix	initialization	where	the	MCT	routers	are	
created	that	will	efficiently	rearrange	data	during	the	Sparse	Matrix	Multiply.		The	
Sparse	Matrix	Initialization	is	therefore	largely	an	MCT	router	initialization.	
	
tasks	per	component	 setting	 sminit	time	(s),		

MCT	2.8	
sminit	time	(s),		
MCT	2.10.beta1		

1600	 1d,	ceg		 		0.2333	 0.0509	
1600	 1d,	orig	 		0.2369	 0.0776	
1600	 wghtfile,	ceg	 19.3781	 0.5114	
1600	 wghtfile,	orig	 19.3543	 0.5454	
3600	 1d,	ceg	 		0.7105	 0.1160	
3600	 1d,	orig	 		0.9557	 0.1022	
3600	 wghtfile,	ceg	 41.0135	 0.7630	
3600	 wghtfile,	orig	 41.0934	 0.5840	
	

• The	cost	of	the	sminit	is	less	than	1	second	in	MCT	2.10.beta1	for	these	
configurations.	

• There	is	a	significant	improvement	in	the	sparse	matrix	initialization	time	
between	MCT	2.8	and	MCT	2.10.beta1	.		Times	were	consistently	reduced	by	
3x	to	60x.		The	largest	differences	are	seen	with	decomp_wghtfile.	

• The	sminit	time	is	much	higher	for	the	decomp_wghtfile	case	compared	to	
the	decomp_1d	case.		The	decomp_wghtfile	mapping	decomposition	is	much	
more	complicated	with	many	segments.		The	number	of	segments	plays	a	
role	in	the	router	initialization	cost.		In	MCT	2.8,	the	cost	is	greater	for	the	
decomp_wghtfile	vs	decomp_1d	by	about	50x	for	3600	tasks	and	80x	for	
1600	tasks.		In	MCT	2.10.beta1	,	this	is	reduced	to	about	between	8x	and	10x	
respectively.		So	both	the	relative	and	absolute	performance	has	been	
improved	for	the	two	decompositions	used	in	these	tests.	



• There	is	no	difference	between	ceg	and	orig	settings,	as	expected,	as	how	
weights	are	read	plays	no	role	in	the	sparse	matrix	initialization.	

	
4. Initialization	of	the		router	between	the	mapping	and	the	target	

decompositions	(router	init)	
	
The	router	initialization	in	OASIS3-MCT	sets	up	the	coupling	rearrangement	
between	the	mapping	decomposition	of	the	target	grid	on	the	source	tasks	and	the	
target	decomposition	of	the	target	grid	on	the	target	tasks.		This	is	similar	to	a	
mapping	rearrangement	between	two	components	with	the	same	grid	on	two	
different	sets	of	cores.			
	
tasks	per	component	 setting	 router_init	time	(s),	

MCT	2.8	
router_init	time	(s),	
MCT	2.10.beta1		

1600	 1d,	ceg	 						1.8794	 			1.5398	
1600	 1d,	orig	 						1.6447	 			2.0391	
1600	 wghtfile,	ceg	 			61.1692	 			7.5321	
1600	 wghtfile,	orig	 			59.9303	 			5.9580	
3600	 1d,	ceg	 			14.0460	 12.4417	
3600	 1d,	orig	 					3.0845	 			1.4561	
3600	 wghtfile,	ceg	 124.2722	 			7.5897	
3600	 wghtfile,	orig	 122.7938	 			5.2974	
	

• The	cost	of	router	initialization	in	MCT2.10.beta1	is	O(10	seconds)	for	these	
cases.	

• Router	initialization	cost	is	reduced	by	up	to	24x	with	MCT	2.10.beta1		
compared	to	MCT	2.8.		The	greatest	reduction	is	with	decomp_wghtfile	on	
3600	tasks.	

• The	ceg	and	orig	settings	should	not	be	playing	a	role	in	timing	or	the	router,	
so	the	inconsistency	in	the	timing	must	be	associated	partly	with	run-to-run	
variability.		

• If	we	consider	only	the	orig	timings,	the	cost	with	MCT	2.8	is	~40x	greater	for	
the	decomp_wghtfile	vs	decomp_1d	for	3600	tasks	and	~60x	for	1600	tasks	
with	MCT	2.10.beta1.		This	is	reduced	to	~4x	for	3600	tasks	and	~3x	for	
1600	tasks.			

• These	results	are	similar	to	the	sminit	timings.		Both	are	initializing	a	router,	
one	on	overlapping	tasks,	the	other	on	concurrent	tasks.	

	
5. Runtime	Sparse	Matrix	Multiply	(avmult)	and	total	coupling	time	(run	

loop)		
	
The	total	coupling	time	(run	loop)	in	these	cases	consist	primarily	of	the	Sparse	
Matrix	Multiply	(avmult)	associated	with	mapping	and	the	rearrangement	of	
coupling	data	between	the	two	components	on	two	different	sets	of	tasks.		The	run	
loop	is	measured	in	the	models	themselves	and	the	first	and	last	coupling	period	are	
excluded	as	these	often	carry	extra	cost	related	to	restart	files	and	other	initial/final	



operations.		The	Sparse	Matrix	Multiply	is	measured	inside	OASIS3-MCT	and	does	
not	exclude	the	first	and	last	steps,	but	the	Sparse	Matrix	Multiply	is	barriered	to	
isolate	its	cost.		100	loops	(ping-pongs)	were	carried	out	in	each	run,	and	the	total	
run	times	for	the	entire	run	is	shown	in	the	tables.		This	data	has	not	been	
normalized	to	"per	ping-pong".			To	do	so,	the	run	loop	times	should	be	divided	by	
98	which	excludes	the	first	and	last	ping-pong.	
	
tasks	per	
component	

setting	 avmult	(s),	
MCT	2.8	

avmult	(s),	
MCT	
2.10.beta1		

Run	loop	(s),	
MCT	2.8	

Run	loop	(s),	
MCT	
2.10.beta1		

1600	 1d,	ceg	 0.0332	 0.0432	 0.2603	 0.2651	
1600	 1d,	orig	 0.0337	 0.0436	 0.2855	 0.2541	
1600	 wghtfile,	ceg	 0.0261	 0.0254	 0.2519	 0.2341	
1600	 wghtfile,	orig	 0.0259	 0.0264	 0.2634	 0.2337	
3600	 1d,	ceg	 0.3312	 0.1779	 0.4503	 0.3547	
3600	 1d,	orig	 0.2586	 0.1820	 0.4138	 0.3807	
3600	 wghtfile,	ceg	 0.0367	 0.0273	 0.1573	 0.1508	
3600	 wghtfile,	orig	 0.0274	 0.0286	 0.1607	 0.1525	
	

• The	avmult	cost	is	much	lower	for	the	decomp_wghtfile	cases	compared	to	
the	decomp_1d	cases	because	decomp_wghtfile	minimizes	rearrangement.		
This	translates	directly	into	reduced	run	loop	times.		With	MCT	2.10.beta1,	
the	avmult	is	faster	by	2x	on	1600	tasks	and	by	7x	on	3600	tasks	for	the	
decomp_wghtfile	compared	to	decomp_1d.		The	decomp_wghtfile	costs	more	
to	initialize	but	the	run	time	performance	benefit	is	significant	for	these	high	
resolution,	high	number	of	core	cases,	as	expected.		The	avmult	represents	
about	50%	of	the	total	run	time	for	the	decomp_1d	cases,	while	it's	about	5-
10%	of	the	total	run	time	for	the	decomp_wghtfile.	

• MCT	2.10.beta1	is	generally	a	little	faster	than	MCT	2.8	in	the	total	runtimes.	
• The	avmult	cost	is	just	about	the	same	between	MCT	2.8	and	MCT	2.10.beta1	.	

The	largest	difference	in	the	avmult	cost	is	for	the	decomp_1d	case	at	3600	
tasks.		The	avmult	cost	is	reduced	by	at	least	30%	in	MCT	2.10.beta1		
compared	to	MCT	2.8	and	this	translates	directly	into	a	reduction	of	the	
runtime	of	about	10-20%.	

• There	is	no	difference	between	ceg	and	orig	as	expected.	
• With	decomp_wghtfile,	the	runtime	is	still	decreasing	from	1600	to	3600	

because	of	the	reduced	cost	of	the	rearrange	in	the	sparse	matrix	multiply.		
With	decomp_1d,	the	run	times	on	3600	tasks	are	greater	than	1600	tasks.	

• There	are	still	a	number	of	minor	open	questions,	
o The	first	and	last	coupling	period	are	excluded	in	the	runtime	but	not	

in	the	avmult,	how	does	that	impact	conclusions?	
o Why	are	the	3600	decomp_1d	cases	so	much	more	expensive	than	the	

1600	decomp_1d	cases?		This	seems	to	be	a	robust	result.		The	
rearrangement	in	the	decomp_wghtfile	case	should	be	minimal,	both	
for	mapping	and	coupling	while	the	cost	of	rearrangement	for	
decomp_1d	is	much	larger	in	both.		It	could	be	that	in	the	3600	tasks	



case,	the	interconnect	scaling	starts	to	really	drop	off,	and	the	
decomp_1d	decomposition	and	extra	rearrangement	associated	with	
it	result	in	significant	cost	penalties.		This	is	not	observed	at	1600	
tasks	or	with	the	decomp_wghtfile	decomp	which	minimizes	
rearrangement.	

	
Summary	
	
MCT2.10beta1	will	provide	a	significant	improvement	in	the	initialization	
performance	in	OASIS3-MCT_4.0.		The	total	initialization	cost	can	be	expected	to	be	
O(seconds)	per	coupling	interaction	for	most	configurations,	including	high	
resolution	cases	running	on	high	core	counts,	even	taking	into	account	the	more	
expensive	decomp_wghtfile	option.		More	typical	moderate	configurations	will	be	
significantly	less	expensive	that	what	has	been	considered	in	this	analysis.		In	
addition,	the	decomp_wghtfile	option	will	provide	a	measurable	improvement	in	the	
runtime	remapping	performance	for	some	configurations.		Compared	to	the	results	
in	Valcke	et	al.	(2017),	Oasis3-MCT_4.0	has	upgrades	that	both	improve	the	
initialization	cost	and	the	runtime	cost	in	significant	ways,	and	those	should	benefit	
all	users.	
	
	

REFERENCES	
	
S.	Valcke,	G.	Jonville,	R.	Ford,	M.	Hobson,	A.	Porter	and	G.	Riley	(2017),	Report	on	
benchmark	suite	for	evaluation	of	coupling	strategies,	UMR	5318	CECI,	
CERFACS/CNRS,	TR-CMGC-17-87,	Toulouse,	France	(http://cerfacs.fr/wp-
content/uploads/2017/05/GLOBC-TR-IS-ENES2_D10.3_MAI2017.pdf)	
	
A.	Craig,	S.	Valcke,	L.	Coquart,	2017:	Development	and	performance	of	a	new	version	
of	the	OASIS	coupler,	OASIS3-MCT_3.0,	Geosci.	Model	Dev.,	10,	3297-3308,	
https://doi.org/10.5194/gmd-10-3297-2017,	2017.	


