
 1

New Buildbot test suite for the OASIS3-
MCT coupler Fortran source code

23/02/2021

Coquart L., Valcke S., Craig A., Maisonnave E.

CECI, Université de Toulouse, CNRS, CERFACS, Toulouse, France,
TR-CMGC-21-36

The work reported in this document has been done in the framework of the ISENES3 project
that has received funding from the European Union’s Horizon 2020 research and innovation
program under grant agreement No 824084.

 2

Table des matières

1 Introduction .. 4

2 Environment for the new Buildbot tests suite .. 5
2.1 Creation of a new buildbot_tests_since_2019 branch in oasis3-mct_tests .. 5

3 General options of the new tests suite ... 6
3.1 Organization of the data .. 6
3.2 Grids ... 6
3.3 Toys .. 6
3.4 Decomposition .. 7
3.5 Coupling fields .. 7

4 Listing of the toys with their tests .. 9
4.1 toy_NLOGPRT ... 9
4.2 toy_grids_writing ... 9
4.3 toy_mapcons .. 9
4.4 toy_scalar_coupling ... 10
4.5 toy_interpolation .. 10
4.6 toy_CHECKIN_BLASOLD_BLASNEW_CHECKOUT .. 10
4.7 toy_MAPPING_options ... 11
4.8 toy_NMATXRD_options .. 11
4.9 toy_mixed_SP_DP ... 12
4.10 toy_identical_grids ... 12
4.11 toy_1f1grd_to_2f2gr .. 12
4.12 toy_auxiliary_routines .. 12
4.13 toy_multiple_fields_one_communication .. 13
4.14 toy_time_transformations ... 13
4.15 toy_restart_ACCUMUL_1_NOLAG .. 13
4.16 toy_restart_ACCUMUL_1_LAG ... 14
4.17 toy_restart_ACCUMUL_2_NOLAG .. 14
4.18 toy_restart_ACCUMUL_2_LAG ... 14
4.19 toy_bundle .. 15
4.20 toy_configuration_components_A ... 15
4.21 toy_configuration_components_B ... 15
4.22 toy_configuration_components_C ... 16
4.23 toy_configuration_components_CGH .. 16
4.24 toy_configuration_components_ABCGH .. 16
4.25 toy_load_balancing .. 17
4.26 toy_gaussianreducedgrid ... 17

 3

4.27 toy_grids_regional_to_regional ... 17
4.28 toy_create_couplcomm .. 18
4.29 toy_NTHRESH_STHRESH ... 18
4.30 toy_intracomm ... 18

5 Computing platforms ... 19

6 Results ... 20
6.1 Results of the tests for Buildbot .. 20

7 Conclusions ... 22

8 Bibliography .. 23

9 Appendix A .. 24

10 Appendix B .. 25

11 Appendix C .. 27

 4

1 Introduction

Buildbot (Coquart, L. et al. (2017)) is software used to automatically compile and run the
OASIS3-MCT source code (Craig, A. et al. (2017)) when a development is committed on the
Git master version of the sources or on an active Git branch. Toy models are used to see if
the development introduces any bugs in the source code. To do so the results of the toy
models running after the development are compared automatically to the results of a
reference state that was verified earlier. The use of Buildbot allows users to detect some
problems and solve them before other merging to the master branch. Toy models do not
contain any physics. They consist usually of two coupled models, model1 and model2,
reproducing some functionalities of the coupler or reproducing algorithms of real coupled
models.

The old Buildbot tests suite was developed between 2012 and 2019 using toys testing
multiple functionalities and toys from users. The toys were added continuously to the test
suite when a development was done on the master of OASIS3-MCT or when a toy was
created to reproduce a bug reported by a user. Prior to the implementation of the new
Buildbot tool, it was difficult to know what was exactly tested with each toy.

This is the reason why a new Buildbot tests suite was constructed in 2019-2020 based on the
functional toy concept. Each toy now tests one functionality of the OASIS3-MCT coupler,
with one ping (a coupling field is sent in one direction only) or one ping-pong (a coupling
field is sent back-and-forth) exchange between model1 and model2 in most of the cases. At
any given Git revision of the master all the functionalities of the coupler should be tested.
This is why a functional toy is added for each new development included in OASIS3-MCT
sources to test and validate the new functionality.

The current tests suite only works with sources of OASIS3-MCT posterior to the release
OASIS3-MCT_4.0 (Valcke, S. et al. (2018)).

Compared to what is described in the document (Coquart, L. et al (2017)) where Buildbot
0.8.8 was used, we installed the new version 2.1.0 of Buildbot on fundy, a Linux Fedora Core
26 server at Cerfacs, to perform the new tests.

In the following document, we first present the environment created to construct the new
Buildbot tests suite, then we define the general options of the tests suite and we describe
quickly each toy: grids used, fields exchanged, mapping and all the tests performed with
each toy available in the tests suite as of December 2020. We also describe the comparison
of the results to the reference state using Buildbot before we conclude.

 5

2 Environment for the new Buildbot tests suite

Since March 2019, OASIS3-MCT is hosted on the private Cerfacs Gitlab Nitrox server,
available to few developers. The sources of the last release OASIS3-MCT_4.0 can be
downloaded by the users from the public gitlab.com web site (see How to download the
OASIS3-MCT sources on the OASIS web site).

On the private Cerfacs Github Nitrox server, the OASIS3-MCT project is organized in four
distinct repositories:
* OASIS3-MCT/oasis3-mct: containing the sources of the coupler
* OASIS3-MCT/oasis3-mct_tests: containing the Buildbot toys
* OASIS3-MCT/oasis3-mct_examples-users: containing some toys to reproduce some user
coupled application
* OASIS3-MCT/oasis3-mct_other: containing all other environments around OASIS3-MCT
that need to be versioned

2.1 Creation of a new buildbot_tests_since_2019 branch in oasis3-mct_tests

The master of oasis3-mct_tests contains all the toys used in the old Buildbot tests suite from
2012 to October 2019. A new branch buildbot_tests_since_2019 was created from the
master to store all the new functional toys created since October 2019 (see Annexe A for
more details on the creation of this new branch).

All the scripts written for the tests are contained in the bench_buildbot_since_2019
directory of the new buildbot_tests_since_2019 branch.

The python file master.cfg of Buildbot is launched on fundy, where the version 2.1.0 of
Buildbot is installed, in /space/coquart/Buildbot_since_2019/oasis3-mct_master (if testing
the master) or in /space/coquart/Buildbot_since_2019/oasis3-mct_branch (if testing a new
branch).
When OASIS3-MCT sources change on the master or on a branch of Nitrox Git server, the
python file master.cfg automatically clones these sources and the Buildbot toys, sends them
to the tested computers, compiles the sources on the different computers and then
launches the tests one after the other. These instructions use the scripts developed and
stored in the directory bench_buildbot_since_2019.

Usually, the developments are completed for a given release and the number of toys testing
all the functionalities of the release of the coupler stay stable in time.
For the next OASIS3-MCT_5.0 release (Valcke, S. et al. (2020)), planned in December 2021, a
new directory will be created bench_buildbot_5.0 (starting with the content of
bench_buildbot_since_2019) for the tests done on OASIS3-MCT_5.0 and
bench_buildbot_since_2019 will be kept for the tests done on the master of OASIS3-MCT. It
is not planned to create a new branch unless we create another new Buildbot tests suite.

The toy_NLOGPRT was the first toy created for the new Buildbot tests suite. All the other
toys presented below were added between October 2019 and December 2020.

 6

3 General options of the new tests suite

3.1 Organization of the data

The resolution of the grids used in the toys is higher than in the previous ones. This is why
we decided to store those grids at the same location for all the toys of the new suite.

The files grids.nc, masks.nc and areas.nc are stored in the common directory oasis-
mct_tests/bench_buildbot_since_2019/common_data_oasis3.
The remapping files used in the toys are all stored in the common directory oasis-
mct_tests/bench_buildbot_since_2019/common_rmp_files. It is in the running script
run_buildbot that the remapping files are linked in the working directory corresponding to
the toy.

3.2 Grids

In our new toys, we use the following global grids (Coquart, L. et al. (2019)):

* lmdz: 96x72x1 points, IPLS/LMD structured logically rectangular low-resolution grid
* bggd: 144x143x1 points, IPLS/LMD structured logically rectangular medium resolution grid
* torc: 182x149x1 points, IPSL/LOCEAN NEMO ORCA2 structured logically rectangular low-
resolution grid
* nogt: 294x362x1 points, IPSL/LOCEAN NEMO ORCA1 structured logically rectangular
medium resolution grid
* icos: 15212x1 points, IPSL/LMD unstructured icosahedral medium resolution grid
* ssea: 24572x1 points, Météo-France/CNRM unstructured gaussian reduced medium
resolution grid

We also use two structured logically rectangular regional grids:

* atmt: 110x110x1 points, atmosphere regional grid
* toyt: 110x110x1 points, ocean regional grid

3.3 Toys

Most of the toy models consists of two coupled models model1 and model2, except
toy_intracomm consisting in 3 executables model1, model2 and model3. There are also
some toys with only one executable model2. We will only describe here the global
characteristics of the coupling of model1 and model2.

In most of the cases, model1 is defined on the nogt grid and model2 is defined on the bggd
grid.

 7

Except for the toy_interpolation that explicitly calculates the remapping files with the hybrid
OpenMP + MPI SCRIP library included in OASIS3-MCT since version 4.0 (Piacentini, A. et al.
(2018)), most of the toys use remapping files pre-calculated and copied in the working
directory at the beginning of the run.

Model1 and model2 usually runs 21600 seconds, their coupling period is equal to 7200
seconds and their time step is equal to 3600 seconds.

For all the toys NLOGRT is “1 0” in the OASIS3-MCT configuration file namcouple, except for
toy_NLOGPRT (which tests different values of NLOGPRT), toy_mapcons (where NLOGPRT is
“20 0”) to be able to get the results from the debug files) and toy_load_balancing (where
NLOGPRT is “1 -2” to output load imbalance diagnostics, see Maisonnave, E. et al. (2020)).

The options CHECKIN/CHECKOUT are activated in the namcouple for all the toys. These
options calculate the global minimum, the maximum and the sum of the source field/target
field. It is a very simple first way to compare the results and validate them using Buildbot.

If the characteristics of a toy are different from what is described above, it will be noted
when listing the toy below.

3.4 Decomposition

If the toy runs in parallel, all processes of the toys read their local grid corresponding to their
local partition.

In parallel, we run on maximum 7 processes (see section 5 for the platform description),
except for toy_interpolation where we also test the hybrid OpenMP+MPI parallelization:

• In monoprocessor, toy_interpolation runs on kraken and belenos on 1 node with 1
processor for each model.

• In parallel on kraken and belenos, toy_interpolation runs on 1 node with 3 processors
for model1 and 4 processors for model2, and also on 2 nodes, each model running on
1 node on 1 MPI task with 1 thread or 10 threads.

As already said, in most of the cases, model1 is defined on the nogt grid with a BOX
decomposition such that each partition is rectangular and covers all longitudes. Model2 is
defined on the bggd grid with an APPLE decomposition: each partition is described as a
segment (that in fact matches the BOX rectangular decomposition).

For toy_interpolation, to avoid the multiplication of the tests, the decomposition is also the
APPLE one (matching the BOX rectangular one) for both grids for all couples of grids.

The toy model toy_1f1grd_to_2f2gr tests other configurations as described in section 4.11.

3.5 Coupling fields

 8

The coupling fields correspond to a sinusoidal analytical function that depends on the time
and the lat-lon coordinates of the model grid, except for toy_mapcons, toy_scalar_coupling
and toy_CHECKIN_BLASOLD_BLASNEW_CHECKOUT.

For toy_interpolation, an error of interpolation is calculated (Coquart, L. et al. (2019)).

As already specified, model1 and model2 of the coupled toy models usually perform one
ping or one ping-pong of a single coupling field.

 9

4 Listing of the toys with their tests

The different sections of the documentation we refer to below correspond to the User
Guide of the master branch of OASIS3-MCT revision 4467c418.

4.1 toy_NLOGPRT

Tests the output written in debug files as the function of NLOGPRT value in the namcouple.
Tests also the output written in the timer files (see User Guide section 3.2).

One ping-pong between nogt(BOX)-bggd(APPLE), MAPPING/BILINEAR (src bfb).
Only parallel MPI tests.

** NLOGPRT values
- 1 0
- 1 1
- 30 3

4.2 toy_grids_writing

Tests the grid writing routines (see User Guide section 2.2.4).

No coupling fields exchanged. Each model reads its own grid and writes grids.nc, masks.nc
and areas.nc.

** Parallelization:
- mono
- para MPI

4.3 toy_mapcons

Tests the CONSERV (Craig, A. (2019)) global options (see User Guide section 4.4).

NLOGPRT is “20 0” to get some coefficients used in the conservation calculation
 from the debug files for Buildbot.
One ping-pong between nogt(BOX)-bggd(APPLE), MAPPING/BILINEAR (src bfb).
Only parallel MPI tests.

** CONSERV options
- GLOBAL
- GLBPOS
- BASBAL
- BASPOS
- GSSPOS

 10

- BSSPOS

4.4 toy_scalar_coupling

Tests exchanges of scalar values (see User Guide section 2.3.2).

One ping-pong between nogt(BOX)-bggd(APPLE), MAPPING/BILINEAR (src bfb).
10 scalars are sent with a coupling period of 3600 seconds from nogt to bggd, no
interpolation.
Only parallel MPI tests.

4.5 toy_interpolation

Tests the remapping of the SCRIP library (see User Guide section 4.3).

This toy was created from the toy located in the examples of the coupler made available to
users, oasis3-mct/examples/test-interpolation.

There is a special script to run this toy as the name of the grids and of the remapping are
directly read from the namcouple to test as many couple of grids as possible automatically.

One ping from source grid(APPLE) to target grid(APPLE).

** Couple of grids and associated remappings:
- bggd-nogt + nogt-bggd (gauswgt, distwgt, bicu, bili, conserv1st, conserv2nd)
- ssea-nogt (gauswgt, distwgt, bicu, bili, conserv1st) + nogt-ssea (gauswgt, distwgt, bicu, bili,
conserv1st, conserv2nd)
- icos-nogt (gauswgt, distwgt, conserv1st) + nogt-icos (gauswgt, distwgt, bicu, bili,
conserv1st, conserv2nd)
** Parallelization:
- mono
- para MPI
- para MPI+OpenMP (only on kraken and belenos)
** Interpolations (when possible):
- SCRIPR/DISTWGT
- SCRIPR/GAUSWGT
- SCRIPR/BILINEAR
- SCRIPR/BICUBIC
- SCRIPR/CONSERV (FRACAREA, FRACNNEI, FRACNNTR)
- SCRIPR/CONSERV2D (FRACAREA, FRACNNEI, FRACNNTR)

4.6 toy_CHECKIN_BLASOLD_BLASNEW_CHECKOUT

Tests the pre-processing and post-processing transformations BLASOLD and BLASNEW (see
User Guide sections 4.2 and 4.4).

 11

One ping from nogt(BOX) to bggd(APPLE), MAPPING/BILINEAR (src bfb).

** Parallelisation:
- mono
- para MPI
** Transformations (in addition to the MAPPING/BILINEAR):
- CHECKIN
- CHECKIN + BLASOLD
- CHECKIN + BLASOLD + BLASNEW
- CHECKIN + BLASOLD + BLASNEW + CHECKOUT

4.7 toy_MAPPING_options

Tests all combinations of the mapping options MAPLOC, MAPSTRATEGY, NMAPDEC (see
User Guide section 4.3).

One ping from nogt(BOX) to bggd(APPLE), MAPPING/BILINEAR.
Only parallel MPI tests.
$NMATXRD=orig (indicates the method used to read the remapping file)
$NUNITNO=100,150

** MAPLOC:
- src
- dst
** MAPSTRATEGY:
- bfb
- sum
- opt
** NMAPDEC:
- decomp_wghtfile
- decomp_1d

4.8 toy_NMATXRD_options

Tests the NMATXRD options, which corresponds to the way the remapping files are read (see
User Guide section 3.2)

One ping from nogt(BOX) to bggd(APPLE), BILINEAR/MAPPING.
Only parallel MPI tests.
$MAPLOC=src, $MAPSTRATEGY=bfb, $NMAPDEC=decomp_1d. XXX

** NMATXRD
- orig
- ceg

 12

4.9 toy_mixed_SP_DP

Tests the exchanges between model1 compiled in single precision and model2 compiled in
double precision.
One ping-pong nogt(BOX)-bggd(APPLE), MAPPING/BILINEAR (src bfb).
Only monoprocessor tests.

4.10 toy_identical_grids

Tests the exchanges between identical grids in model1 and model2.

One ping from bggd(APPLE) to bggd(APPLE), no remapping.
Only monoprocessor tests.

4.11 toy_1f1grd_to_2f2gr

Tests one source field defined on one grid sent to two target fields defined on two different
target grids.

Multiple pings from nogt of model1 to lmdz and bggd of model2, MAPPING/BILINEAR (src
bfb).

* nogt(BOX) in model1 – lmdz(APPLE) and bggd(APPLE) in model2
** Parallelization:
- mono
- para MPI

* nogt(APPLE) in model1 – lmdz(BOX) and bggd(BOX) in model2
** Parallelization:
- mono
- para MPI

4.12 toy_auxiliary_routines

Tests all the auxiliary routines (see User Guide section 2.2.9).

One ping nogt(BOX)-bggd(APPLE), MAPPING/BILINEAR (src bfb).
Only monoprocessor tests.

** Routines tested:
- oasis_abort
- oasis_get_debug
- oasis_set_debug
- oasis_get_intercomm
- oasis_get_intracomm
- oasis_put_inquire

 13

- oasis_write_restart
- oasis_get_ncpl, oasis_get_freqs

4.13 toy_multiple_fields_one_communication

Tests multiple coupling fields sent via a single communication (see User Guide section 2.2.7).

Multiple pings from nogt(BOX) to bgg(APPLE).

** Parallelization:
- mono
- para MPI
** Coupling fields and transformations:
- one multiple coupling field (2 grouped fields), (MAPPING/BILINEAR (src bfb) + ACCUMUL) +
one single coupling field (SCRIPR/BILINEAR+AVERAGE), without LAG
- one multiple coupling field (2 grouped fields), (MAPPING/BILINEAR (src bfb) + ACCUMUL) +
one single coupling field (SCRIPR/BILINEAR+AVERAGE), with LAG (with all the coupling fields
in the same restart)

4.14 toy_time_transformations

Tests the time transformations (see User Guide section 4.1).

One ping from nogt(BOX) to bggd(APPLE), MAPPING/BILINEAR (src bfb).
Only monoprocessor tests.
The time step of the models is equal to 3600 seconds.
The runtime is equal to 57600 seconds with a coupling period equal to 14400 seconds.

** Transformations:
- ACCUMUL
- AVERAGE
- T_MIN
- T_MAX
** Time simulated:
- 0 to (57600-3600)
** LAG tests:
- without LAG
- with LAG

4.15 toy_restart_ACCUMUL_1_NOLAG

Tests the LOCTRANS restart for the ACCUMUL time transformations without LAG (doc
section 2.3.3).

One ping from nogt(BOX) to bggd(APPLE), MAPPING/BILINEAR (src bfb), ACCUMUL.

 14

Only monoprocessor tests.
Without LAG.
The time step of the models is equal to 3600 seconds.
The runtime is equal to 43200 seconds with a coupling period equal to 14400 seconds.

** Time simulated:
- 0 to (43200-3600)

4.16 toy_restart_ACCUMUL_1_LAG

Tests the LOCTRANS restart for the ACCUMUL time transformation with LAG (see User Guide
section 2.3.3).

One ping from nogt(BOX) to bggd(APPLE), MAPPING/BILINEAR (src bfb), ACCUMUL.
Only monoprocessor tests.
With LAG.
The time step of the models is equal to 3600 seconds.
The runtime is equal to 43200 seconds with a coupling period equal to 14400 seconds.

** Time simulated:
- 0 to (43200-3600)

4.17 toy_restart_ACCUMUL_2_NOLAG

Tests the LOCTRANS restart for the ACCUMUL time transformation without LAG using the
LOCTRANS restart file of toy_restart_ACCUMUL_1_NOLAG (see User Guide section 2.3.3).

One ping from nogt(BOX) to bggd(APPLE), MAPPING/BILINEAR (src bfb).
Only monoprocessor tests.
Without LAG.

** Time simulated:
- 0 to (14400-3600)

4.18 toy_restart_ACCUMUL_2_LAG

Tests the LOCTRANS restart for the ACCUMUL time transformation with LAG using the
restart file of toy_restart_ACCUMUL_1_LAG (see User Guide section 2.3.3).

One ping from nogt(BOX) to bggd(APPLE), MAPPING/BILINEAR (src bfb).
Only monoprocessor tests.
Without LAG.

 ** Time simulated:
- 0 to (14400-3600)

 15

4.19 toy_bundle

Tests the exchanges of one 3D bundle coupling field (see User Guide 2.2.7).

One ping-pong between nogt(BOX)-bggd(APPLE), MAPPING/BILINEAR (src bfb).

** Parallelization:
- mono
- para MPI
** Coupling fields:
- one bundle with 5 levels in each model

4.20 toy_configuration_components_A

Tests the configuration A described in the picture 2.1 of the OASIS3-MCT documentation,
see Appendix B below.

Multiple ping pong between nogt(BOX)-bggd(APPLE), MAPPING/BILINEAR (src bfb).
Only parallel MPI tests.

** Configuration:
- exchange A: 2 executables, model1 and model2, running concurrently on separate sets of
MPI tasks. Model 1 has one component comp1m1 defined on nogt (proc 0-1). Model2 has
two components comp2m2, defined on bggd (proc 2-6), and comp4m2 (proc 7). Comp4m2
does not couple
** Coupling fields:
- one bundle field (5 levels) + one multiple field (2 grouped fields) + 1 single field, in both
models

4.21 toy_configuration_components_B

Tests the configuration B described in the picture 2.1 of the OASIS3-MCT documentation,
see Appendix B below.

This toy contains only one executable model2.
Multiple ping pong between bggd(APPLE)-lmdz(APPLE), MAPPING/BILINEAR (src bfb).
Only parallel MPI tests.

** Configuration:
- exchange B: 2 concurrently components in model2, comp2m2 defined on bggd(APPLE)
(proc 0-1) and comp3m2 defined on lmdz(APPLE) (proc 2-3). Comp4m2 (proc 4) does not
couple
** Coupling fields:
- one bundle field (5 levels) + one multiple field (2 grouped fields) + 1 single field, on each
grid bggd and lmdz

 16

4.22 toy_configuration_components_C

Tests the configuration C described in the picture 2.1 of the OASIS3-MCT documentation, see
Appendix B below.

This toy contains only one executable model2.
Multiple ping pong between lmdz(APPLE)-icos(SERIAL), MAPPING/DISTWGT (src bfb).
Only parallel MPI tests.

* Configuration:
- exchange C: 3 components in one executable: comp2m2, comp3m2 and comp4m2.
Comp2m2, defined on bggd (proc 0-1), and comp4m2 (proc 5) do not couple. Component
comp3m2 has two concurrent sub-components, one running on lmdz (proc 2-3) and one
running on icos (proc 4)
* Coupling fields:
- one bundle field (5 levels) + one multiple field (2 grouped fields) + 1 single field, on each
grid lmdz and icos

4.23 toy_configuration_components_CGH

Tests configurations C, G, and H described in the picture 2.1 of the OASIS3-MCT
documentation, see Appendix B below.

This toy contains only one executable model2.
Only parallel MPI tests.

* Configuration:
- Exchange C, G, H: 3 components in one executable: comp2m2, comp3m2, comp4m2.
Comp2m2, defined on bggd (APPLE) (proc 0-1) and comp4m2 (proc 5) do not couple.
Component comp3m2 has two concurrent sub-components, one running on lmdz(APPLE)
(proc 2-3) and one running on icos(SERIAL) (proc 4). It has also one sub-component running
sequentially on ssea(APPLE) (proc 2-4), compared to the two other ones
* Coupling fields:
- one ping pong between lmdz(APPLE) and icos(SERIAL), MAPPING/DISTWGT (src bfb)
- multiple ping pong between lmdz(APPLE) and ssea(APPLE) of one bundle field (5 levels) +
one multiple field (2 grouped fields) + 1 single, MAPPING/BILINEAR (src bfb)
- one ping pong between icos(SERIAL) and ssea(APPLE), MAPPING/DISTWGT (src bfb)

4.24 toy_configuration_components_ABCGH

Tests configurations A, B, C, G, and H described in the picture 2.1 of the OASIS3-MCT
documentation, see Appendix B below.

This toy contains two executables.
Only parallel MPI tests.

** Configuration:

 17

- Exchange A, B, C, G, H: 2 executables model1 and model2, running concurrently on
separate sets of MPI tasks. Model 1 has one component comp1m1 defined on nogt (proc 0-
1). Model2 has three components comp2m2, defined on bggd (proc 2-3), comp3m2 defined
on lmdz (proc 4-5), icos (proc 6), ssea (proc 4-6), and comp4m2 (proc 7). Comp4m2 does not
couple
* * Coupling fields:
- model1-comp1m1 to model2-comp2m2: multiple ping pong between nogt(BOX) and
bggd(APPLE) of one bundle field (5 levels) + one multiple field (2 grouped fields) + 1 single
coupling field, MAPPING/BILINEAR (src bfb)
- model2-comp2m2 et model2-comp2m3: one ping pong from bggd(APPLE) to lmdz(APPLE),
MAPPING/BILINEAR (src bfb)
- model2-comp2m3: one ping pong between lmdz(APPLE) and icos(SERIAL),
MAPPING/DISTWGT (src bfb)
- model2-comp2m3: multiple ping pong between lmdz(APPLE) and ssea(APPLE) of one
bundle field (5 levels) + one multiple field (2 grouped fields) + 1 single coupling field,
MAPPING/BILINEAR (src bfb)
- model2-comp2m3: one ping pong between icos(SERIAL) and ssea(APPLE),
MAPPING/DISTWGT (src bfb)

4.25 toy_load_balancing

This toy tests the new diagnostic of load imbalance in coupled models (see Maisonnave, E. et
al. (2020)).

One ping pong between nogt(BOX)-nogt(APPLE),MAPPING/BILINEAR (src bfb).
Only parallel MPI tests.

** NLOGPRT:
- (1, -2)

4.26 toy_gaussianreducedgrid

Tests the APPLE decomposition by entire number of latitudes for a gaussian reduced grid
(see User Guide section 2.2.3).

One ping pong between nogt(BOX)-ssea(APPLE), MAPPING/BILINEAR (src bfb).

** Parallelization:
- mono
- para MPI

4.27 toy_grids_regional_to_regional

Tests one ping pong between two regional structured grids.

One ping pong between toyt(BOX)-atmt(BOX), MAPPING/DISTWGT (src bfb).

 18

** Parallelization:
- mono
- para MPI

4.28 toy_create_couplcomm

Tests the possibility of coupling a sub-component only over a subset of processes, see
picture 2.2 of the OASIS3-MCT documentation, see Appendix B below.

Toy created from toy_configuration_components_C, adding two processors not coupling to
comp3m2.

4.29 toy_NTHRESH_STHRESH

Tests the reading of NTHRESH and STHRESH in the namcouple for the SCRIP/CONSERV
remapping (see User Guide section 4.3).
NTHRESH/STHRESH is the value of the northern/southern latitude threshold in radians
where conservative area computation switches from linear boundaries in longitude and
latitude at the equator to a Lambert equivalent azimuthal projection toward the north/south
pole.

One ping from nogt(BOX) to bggd(APPLE)

** Parallelization:
- mono
- para MPI
** Interpolation:
- SCRIPR/CONSERV (default in SCRIP: NTHRESH=2.0 STHRESH=-2.0; no Lambert projection)
- SCRIPR/CONSERV: NTHRESH=1.45 STHRESH=-1.45

4.30 toy_intracomm

Tests oasis_get_intercomm, oasis_get_intracomm and new oasis_get_multi_intracomm
routines (see User Guide 2.2.9).

3 executables: model1 (nogt), model2 (bggd), model3 (bggd).
One ping from nogt(BOX) to bggd(APPLE), MAPPING/BILINEAR (src bfb).
One ping from bggd(APPLE) to bggd(APPLE), no interpolation.

* Parallelization:
- mono
- paraMPI

 19

5 Computing platforms

At the time of writing, the new Buildbot tests suite runs on fundy, stiff, kraken and belenos
described below:

* Fundy is a Linux Fedora Core 26 computer of Cerfacs with 4 processors, and the Buildbot
tests run using gfortran (based on gcc version 7.3.1 20180130) + openmpi (mpirun version
2.0.2). At the moment, there are 222 tests done on this computer.
* Stiff is also a Linux Fedora Core 26 computer of Cerfacs with 4 processors, and the Buildbot
tests run using pgi (version 18.7) + openmpi (mpirun version 2.1.2). At the moment, there
are 222 tests done on this computer.
* Kraken is a Lenovo super-computer at Cerfacs and the Buildbot tests run using intel
(version 18.0.1.163) + intelmpi (version 2018.1.163). One node contains 36 cores. At the
moment, there are 326 tests done on this computer.
* Belenos is an AMD super-computer at Météo-France (newer than kraken) and the Buildbot
tests run using intel (version 2018.5.274) + intelmpi (version 2018.5.274). One node contains
128 cores. At the moment, there are 326 tests done on this computer.

The number of tests is different from a machine to another as we run the toy models with
different levels of parallelization on the different platforms; as already detailed above:

• On stiff and fundy, we only run in monoprocess or with multiple processors (7), even
for toy_interpolation.

• On kraken and belenos, we perform tests on 1 node in monoprocess or in parallel (7
processors) and we also perform tests on 2 nodes, each model running on 1 node
using 1 MPI task and either 1 thread or 10 threads, to test the hybrid parallelization
OpenMP+MPI for toy_interpolation.

 20

6 Results

6.1 Results of the tests for Buildbot

Each test is running in a directory defined using the name of the toy, the namcouple tested,
the Makefile tested, the number of nodes and threads (equals to 1 except for
toy_interpolation on kraken and belenos), “model1” with the number of processors used to
run it, “model2” with the number of processors used to run it and “model3 with the number
of processors used to run it. It is possible to run a maximum of 3 executables. If one or two
executables are not used their number of processors is equal to 0.

All the parameters of each test are described in a file named arbitrarily case1.txt to
case999.txt, for monoprocessor tests, and in a file named case10001.txt to case10999.txt,
for the corresponding parallel tests. For toy_interpolation the configuration files testing the
OpenMP+MPI parallelization are named interp55.txt to interp106.txt for the 1 thread case
and interp10055.txt to interp.10106.txt for the 10 threads case.

In each file, the name of the toy, the namcouple used, the Makefile used, the number of
processes for each executable model1, model2 and model3 (or the number of nodes,
number of MPI tasks and number of threads for toy_interpolation) are specified. Then there
is the number of fields to be verified by Buildbot followed by their NetCDF debug file’s name.

On the contrary of what was done in the old Buildbot suite, there is only one script to launch
to run the toy, create the output text files and verify the results with Buildbot,
independently of the number of executables (one, two or three). Some special scripts were
written for toy_interpolation as the name of the couple of grids are read in the namcouple
as well as the remapping under testing. There is also the script to manage error detection
after the run.

All these files are located in oasis-mct_tests/bench_buildbot_since_2019 of the new
buildbot_tests_since_2019 branch.

As for the old Buildbot tests suite, a reference state is first created and verified. In each
reference repository of each test validated, there are multiple text files created from the
output files of the OASIS3-MCT coupler (nout file, debug files printed thanks to NLOPRT=1,
debug coupling files, restarts if LAG>0 and/or if LOCTRANS operations) and the model
outputs, using the script output_files_oa3-mct_buildbot. The script output_files_oas3-
mct_buildbot uses principally grep and ncdump commands.

The text files created at the end of each run allow Buildbot to validate the new
development. One text file validates that the job ran successfully. One text file validates the
min IO unit number and the max IO unit number read in the nout.000000 file. One text file
validates the diagnostics on the coupling fields written in the debug files thanks to the use of
the CHECKIN and CHECKOUT options in the namcouple. One text file validates the minima
and maxima of the coupling fields sent and received in the toy models. All the debug

 21

coupling fields, stored in NetCDF files, and described in the configuration files case*.txt or
interp*.txt, are stored into a text file thanks to a ncdump command to be able to verify their
values afterwards. If the toy runs in monoprocessor and in parallel, one text file is created
for the parallel case to validate the parallelization by comparison to the monoprocessor
case. Some special verifications are done for toy_grids_writing, as we must verify that the
grids read by each model are the same that the one written in areas.nc, masks.nc and
grids.nc. It is also the case for the toys toy_restart_ACCUMUL* where the output coupling
fields, the LOCTRANS restart (LAG=0), or the restart (LAG>0) fields must be compared to the
ones obtained with toy_time_transformations for LOCTRANS=ACCUMUL. For
toy_load_balancing we verify the debug files and if the timer files were created but we do
not verify the consistency of the load balancing results as we run toy models.

Every time a text file is created for a verification with Buildbot, a text diff file is also created
with the script output_files_oa3-mct_buildbot, comparing the actual result of the run to the
reference state. When creating the first reference state, the text diff files have a size equals
to 0 but as all the results are validated by hand in this case. When adding new toys
corresponding to new developments, the toys are first validated by hand before integrating
the Buildbot tests suite.

Buildbot (installed on fundy) listens to the GIT server and when a modification is done in the
master or a branch, the tests are launched on fundy, stiff, kraken and belenos. The
extraction of the sources of the OASIS3-MCT coupler and the Buildbot toys are done
automatically as well as the compilation of OASIS3-MCT on the different computers. Then all
the tests are run one after the other. In the analysis repository, all the text files described
above are created at the end of each test and the verification of the results is done by
checking the size of the text diff files also created at the end of each test.

If the size of the diff files is equal to 0, which means that there is no difference between the
current tests and the reference state, the output is green in the graphical Buildbot interface;
otherwise the output is marked red, the tests stop, and it is necessary to open the
corresponding text diff file with a size different from 0 to see where the differences come
from (characters, numbers), see Appendix C below.

 22

7 Conclusions

This report presents the development of a new Buildbot tests suite for the OASIS3-MCT
coupler Fortran sources, between October 2019 and December 2020. Compared to the old
one (Coquart, L. et al. (2017)), each toy model tests now one functionality and the results are
easier to interpret and errors easier to catch.

After describing the new environment created for the new tests and the general options of
the Buildbot toys, we described quickly the toys and the different tests they perform.

Buildbot now runs on fundy, stiff, kraken and belenos. The Buildbot tool has helped to find a
number of bugs during the development of the OASIS3-MCT coupler.

Some toys are still missing (for example toy_icos_parallel to test the decomposition of an
icosahedrical grid or the toy SPOC created to performed online trainings for users) and will
be added soon. Other toys will be added if needed to test and validate new developments in
the master until the release OASIS3-MCT_5.0 in December 2021.

There is the development of a python interface in OASIS3-MCT at the moment. Some toys
were created to test the python API, as for the Fortran sources described in this document.
The toys created for the pyoasis part of OASIS3-MCT should be added to the new Buildbot
tests suite in 2021.

 23

8 Bibliography

Valcke, S., Craig, A. and Coquart, L. (2020), OASIS3-MCT development plan, CECI, Université
de Toulouse, CNRS, CERFACS, Toulouse, France - TR-CMGC-20-164, Technical report

Maisonnave, E., Coquart, L. and Piacentini, A. (2020), A better diagnostic of the load
imbalance in OASIS based coupled systems, CECI, Université de Toulouse, CNRS, CERFACS,
Toulouse, France - TR-CMGC-20-176, Technical report

Craig, A. (2019) 9, GSSPOS and BSSPOS options for the global conservation in OASIS3-MCT,
CECI, Université de Toulouse, CNRS, CERFACS, Toulouse, France - TR-CMGC-19-128,
Technical report

Coquart, L. and Valcke, S. (2019) ESMF v7.1.0r remapping between two structured grids and
between two unstructured grids and one structured grid, CECI, Université de Toulouse,
CNRS, CERFACS, Technical report

Valcke, S., Craig, A. and Coquart, L. (2018) OASIS3-MCT User Guide, OASIS3-MCT4.0, CECI,
Université de Toulouse, CNRS, CERFACS - TR-CMGC-18-77, Technical report

Piacentini, A., Maisonnave, E., Jonville, G., Coquart, L. and Valcke, S. (2018), A parallel SCRIP
interpolation library for OASIS, CECI, Université de Toulouse, CNRS, CERFACS - WN-CMGC-18-
34, Toulouse, France , Working note

Craig, A., Valcke, S. and Coquart, L. (2017) Development and performance of a new version
of the OASIS coupler, OASIS3-MCT 3.0, Geoscientific Model Development, 10, pp. 3297-
3308, doi: 10.5194/gmd-10-3297-2017

Coquart, L., d'Ast, I. and Valcke, S. (2017) Buildbot : Le logiciel utilisé pour compiler et tester
automatiquement les développements réalisés dans le coupleur OASIS3-MCT, UMR 5318
CECI, CERFACS/CNRS, TR-CMGC-17-85, Technical report

 24

9 Appendix A

Creation of the new buildbot_tests_since_2019 branch on Tioman, Linux Fedora Core 26 at
Cerfacs computer

* cd /space/coquart
* git clone git@nitrox.cerfacs.fr:globc/OASIS3-MCT/oasis3-mct_tests.git
* cd /space/coquart/oasis3-mct_tests
* git checkout -b buildbot_tests_since_2019
* git push --set-upstream origin buildbot_tests_since_2019

Total 0 (delta 0), reused 0 (delta 0)
remote:
remote: To create a merge request for buildbot_tests_since_2019, visit:
remote: https://nitrox.cerfacs.fr/globc/OASIS3-MCT/oasis3-
mct_tests/merge_requests/new?merge_request%5Bsource_branch%5D=buildbot_te
sts_since_2019
remote:
To nitrox.cerfacs.fr:globc/OASIS3-MCT/oasis3-mct_tests.git
 * [new branch] buildbot_tests_since_2019 -> buildbot_tests_since_2019
Branch buildbot_tests_since_2019 set up to track remote branch
buildbot_tests_since_2019 from origin.

Updating of the new buildbot_tests_since_2019 branch on Tioman

* cd /space/coquart
* rm -rf oasis3-mct_tests
* git clone git@nitrox.cerfacs.fr:globc/OASIS3-MCT/oasis3-mct_tests.git
* cd /space/coquart/oasis3-mct_tests
* git checkout -b buildbot_tests_since_2019
* git rm -r bench_buildbot bench_buildbot_old_4.0 HR_tutorial mapchk maphot
no_pes_coupling pes_coupling pes_coupling_3.0 tc3a test_1bin_concurrent
test_1bin_ocnice test_1bin_sequential test_1fto2f_2models test_3D_remap_file
test_bundles test_eric_3bin_io_2grids test_gaussian_reduced test_grouped_fields
test_identical_grids test_prism_oasis testr4r8 test_simple_multiple_fields
test_simple_options test_smasson_zooms test_writing_grids toy_auxiliary_routines
toy_eric_echam_cosmo_cottbus toy_eric_pulsation toyhadgem3_UKC
* git gui

* mkdir bench_buildbot_since_2019
* mkdir toy_NLOGPRT
* git gui

 25

10 Appendix B

Picture 2.1 of the OASIS3-MCT documentation

Comp%exe1%)%%%%
comp1)grid1% Sub)comp%exe2%–%%%

comp3%–%grid3%
%
%

%
%
%
%

Sub)comp%exe2%–%comp3%–%grid5%
%

%
%
%
%
%

MPI%tasks%

Comp%exe2%–%
comp2%–%grid2%

Comp%exe2%–%comp3%

Sub)comp%exe2%–%
comp3%–%grid4%

%
%
%
%
%

A%

D%
C%

E%

J%

G% H%

Comp%
exe2%–%%
comp4%

B%

F%

I%

0%%%%1%%%%2%%%%3%%%%4%%%%5%%%%%%%6%%%%%7%%%%8%%%%9%%%10%%%11%%%12%%13%%%14%%%15%%%16%%%17%%%18%%%19%%%20%%%21%%22%%23%%%24%%%25%%%26%%%27%%28%%%29%%%30%%%31%%32%%%33%%%34%%35%%%36%%37%%%%%%%

 26

Picture 2.2 of the OASIS3-MCT documentation

exe1$comp1$grid1-

exe2-–-comp3-–-grid3-

exe2-–-comp3-–-grid5-

MPI-tasks-

exe2$comp2$grid2- exe2-–-comp3-

exe2-–-comp3-–-grid4-

exe2-–--
comp4-

oasis_init_comp-
(…,`comp1`,-…)-

oasis_def_parBBon-[grid1]-
oasis_def_var-

oasis_def_parBBon-[grid3]-
oasis_def_var-

oasis_init_comp-
(…,`comp2`,-…)-

oasis_def_parBBon-[grid2]-
oasis_def_var-

oasis_init_-
comp(…,-

`comp4`,-...,-
coupled=-
`false`)-

oasis_init_comp-(…,`comp3`,-…)-
-

oasis_init_comp-(…,`comp3`,-…)-
-

oasis_def_parBBon-
oasis_def_var-

oasis_def_parBBon-
oasis_def_var-

oasis_init_-
comp-(…,-

`comp3`,-…)-

oasis_enddef- oasis_enddef- oasis_enddef- oasis_enddef- oasis_-
enddef-

oasis_put/get- oasis_put/get- oasis_put/get- oasis_put/get-

oasis_terminate- oasis_terminate- oasis_terminate- oasis_teminate- oasis_-
terminate-

oasis_put/get-

oasis_put/get- oasis_put/get- oasis_put/get- oasis_put/get-

oasis_put/get-

…- …- …- …-

.-

.-

0----1----2----3----4----5-------6-----7----8----9---10---11---12--13---14---15---16---17---18---19---20---21--22--23---24---25---26---27--28---29---30---31--32---33---34--35---36--37-------

oasis_get_localcomm-(lcom,-…)-oasis_get_localcomm-(lcom,-…)- oasis_get_-
localcom-
(-lcom,-…)-

oasis_create_couplcomm-(1,-lcom,-…)-oasis_create_couplcomm-(1,-lcom,-…)- oasis_create_-
couplcom-(0,-
lcom,-…)-

 27

11 Appendix C

Example of Buildbot results on fundy computer

