

A revised ocean-atmosphere physical coupling interface

and about technical coupling software

S. Valcke (CERFACS) E. Guilyardi (IPSL/LOCEAN & CGAM) with numerous contributions from the community

<u>Outline</u>

Part I – On an revised ocean-atmosphere physical coupling interface

- Context and guidelines for the design of a new physical interface
- The physical exchanges
- Time sequence of exchanges

Part II - About technical coupling software

- Different technical solutions to assemble model codes
- •The OASIS coupler (historic, community, ...)
- Regridding algorithms in OASIS
- 1st order conservative remapping (2nd order, SUBGRID)
- Non-matching sea-land mask
- Vector interpolation

I.1 Context and guidelines for the design of a revised interface

- Proposition discussed during the EU PRISM project (definition of "standard" physical interfaces), following the PILPS experience (Polcher et al 1998)
- J.Polcher (LMD), T. Fichefet (UCL), G. Madec (LOCEAN), O. Marti (LSCE), S. Planton (Meteo-France), E. Guilyardi (LOCEAN)
- Guidelines:
 - physically based interfaces across which conservation of mass, momentum and energy can be ensured
 - * which process should be computed by which component/module
 - * numerical constraints (stability, regridding, subgrid issues, local conservation,...)
 - * historical and practical constraints

I.2 The physical exchanges

I.3 Time sequence of exchanges

Frequency of coupling exchanges:

$$F_7 = F_6 < F_5 = F_3 = F_1 = F_4 = F_2$$
slow
fast

Comments and conclusions

- Increased modularity with SLT and OS modules.
- SLT runs on finer grid and computes surface turbulent coefficient.
- OS computes radiation and turbulent fluxes.

 \checkmark Separation of fast ocean + sea ice surface processes involving heat, water and momentum exchanges with the atmosphere from slower deeper ocean processes.

✓ Calculation of fluxes at the resolution of the surface (would be nonphysical to regrid the turbulent exchange coefficients C_d , C_e , C_h).

 \checkmark Implicit calculation of energy fluxes from the base of the sea-ice to the top of the atmosphere.

Why couple ocean and atmosphere (and sea-ice and land and ...) models?

Of course, to treat the Earth System globally

What does "coupling of codes" imply?

- Exchange and transform information at the code interface
- Manage the execution of the codes

What are the constraints?

- \checkmark The coupling should be easy to implement
- ✓ The coupling should be flexible
- ✓ The coupling should be efficient
- \checkmark The coupling should be portable
- ✓ We start from independently developed existing codes

II.1 Different technical solutions to assemble model codes:

2. <u>use existing communication protocole</u> (MPI, CORBA, UNIX pipe, files, ...)

program prog1
 call xxx_send (prog2, data,) end

program prog2 ... call xxx_recv (prog1, data) end

- 😕 easy
- 😕 flexible
- \bigcirc (efficient)
- (portable)
- existing codes

3. <u>use coupling framework</u> (ESMF, FMS, ...)

- Split code into elemental units
 - Write or use coupling units

- Adapt code data structures
- Use the framework to build and control a hierarchical merged code

probably best solution in a controlled development environment

probably best solution to couple independently developed codes

II.2 The OASIS coupler

- developed by CERFACS since 1991 to couple existing GCMs
- Currently an active collaboration between NLE-IT, CNRS and CERFACS

1991		2001	
$ \rightarrow$		PRISM →	
OASIS 1 \rightarrow OASIS 2	\rightarrow	OASIS3→	
	\rightarrow	OASIS4 →	

OASIS1, OASIS2, OASIS3:

•low resolution, low number of 2D fields, low coupling frequency:

→flexibility very important, efficiency not so much!

* New OASIS3_3 release in the next few weeks!

<u>OASIS4:</u>

high resolution parallel models, massively parallel platforms, 3D fields

need to optimise and parallelise the coupler

OASIS4 beta version available

II.2.1 OASIS community today

•CERFACS (France) ARPEGE3-ORCA2/LIM, ARPEGE4-NEMO/LIM-TRIP •METEO-FRANCE (France) ARPEGE4-ORCA2, ARPEGE3-OPAmed ARPEGE3-OPA8.1/GELATO •IPSL-LODYC, LMD, LSCE (France) LMDz-ORCA2/LIM LMDz-ORCA4 ORCA4 •MPI-M&D (Germany) ECHAM5-MPI-OM, ECHAM5-C-HOPE, PUMA-C-HOPE, EMAD-E-HOPE •ECMWF IFS - CTM (GEMS), IFS - ORCA2 (MERSEA) •MET Office (UK) MetOffice ATM - NEMO •IFM-GEOMAR (Germany) ECHAM5 - NEMO (OPA9-LIM) •NCAS / U. Reading (UK) ECHAM4 - ORCA2 HADAM3-ORCA2 •SMHI (Sweden) RCA(region.) - RCO(region.) •NERSC (Norway) ARPEGE - MICOM, CAM - MICOM ECHAM5 - TM5/MPI-OM •KNMI (Netherlands) ECHAM5 - MPI-OM ·INGV (Italy) •ENEA (Italy) MITgcm - REGgcm ECHAM5(T106) - ORCA $\frac{1}{2}$ deg •JAMSTEC (Japan) •IAP-CAS (China) AGCM - LSM ·KMA (Korea) **CAM3 - MOM4** •BMRC (Australia) BAM3-MOM2, BAM5-MOM2, TCLAPS-MOM Sea Ice code - MOM4 •CSIRO (Australia) •RPN-Environment Canada (Canada) MEC - GOM•UQAM (Canada) GEM - RCO •U. Mississippi (USA) MM5 - HYCOM ·IRI (USA) ECHAM5 - MOM3 UCLA-QTCM - Trident-Ind4-Atlantic ·JPL (USA)

ECMWF workshop on Ocean-Atmosphere Interactions, 10-12 Nov 2008

Part II - About technical coupling software

II.3 Regridding algorithms available in OASIS

(Los Alamos SCRIP library, Jones 1999)

- <u>n-nearest-neighbours</u>: weight(x) α 1/d
 d: great circle distance on the sphere:
 d = arccos[sin(lat1)*sin(lat2) + cos(lat1)*cos(lat2) * cos(lon1-lon2)]
- gaussian weighted n-neighbours: weigth(x) $\alpha \exp(-1/2 d^2/\sigma^2)$
- bilinear interpolation

> general bilinear iteration in a continuous local coordinate system using f(x) at x_1, x_2, x_3, x_4

• bicubic interpolation: conserves 2nd order properties such as wind curl

general bicubic iteration
 continuous local coordinate system:
 f(x), δf(x)/δi, δf(x)/δj, δ²f/δiδj in
 x₁, x₂, x₃, x₄
 for logically-rectangular grids (i,j)

 > standard bicubic algorithm: 16 neighbour points
 for Gaussian Reduced grids

x: source grid point

target grid point

One example of bilinear interpolation error

 $F = 2 + \cos[\pi * a\cos(\cos(\log)\cos(\log t))] \qquad LMDz \text{ grid } (96 \times 72) \rightarrow ORCA2$

> < 0.2% whole domain; ~1% near the coastline

ECMWF workshop on Ocean-Atmosphere Interactions, 10-12 Nov 2008

x (1) // (m2.s))

• <u>One example of bicubic interpolation error</u>

F = 2 - $cos[\pi * acos(cos(lon)cos(lat)]$ BT42 Gaussian red. -> ORCA2

< 0.2% in equatorial and tropical regions,
 < 0.4% at higher or lower latitudes (where the Gaussian grid is effectively reduced), up to 4% near the coastline

II.3 Regridding algorithms available in OASIS

(Los Alamos SCRIP library, Jones 1999)

- <u>1st</u> order conservative remapping:
 - > conserves integral of extensive properties
 - \succ weight of a source cell α to intersected area

$$Q_{o}^{i} = \frac{1}{A_{o}} \sum_{n=1}^{N} Q_{a_{n}} W_{n}^{i} \text{ with } W_{n}^{i} = \oint_{C_{n}} -\sin(\ln t) d\ln t$$

* assumes borders are linear in (lat,lon)

SIS source grid cell target grid cell Q_{a2} Q_{a1} Q_{a2} Q_{a1}

> Lambert equivalent azimuthal projection near the pole for intersec. calc.

Actual limitations:

• assumes sin(lat) linear function of lon (for line integral calculation)

- > need to use a projection near the pole (as done for intersect. calc.)
- \cdot exact calculation is not possible as "real shape" of the borders are not known
 - > could use of border middle point
 - > to ensure conservation, need to normalize by true area of the cells

Other methods e.g.:

- Monte Carlo random walk
- Projection of the source and target polygons on a plane (IPSL)

• One example of conservative remapping error

 $F = 2 - \cos[\pi * a\cos(\cos(\log)\cos(\log))]$ ORCA2 -> LMDz (96×72)

ECMWF workshop on Ocean-Atmosphere Interactions, 10-12 Nov 2008

<u>II.4 Problem with 1st order conservative</u> <u>remapping</u> (low to high resolution) :

• <u>Solution 1</u>: use 2nd order conservative remapping:

$$\mathbf{Q}_{o}^{i} = \mathbf{Q}_{a}\mathbf{w}_{1}^{i} + \frac{\partial \mathbf{Q}_{a}}{\partial lat}\mathbf{w}_{2}^{i} + \frac{1}{\cos(lat)}\frac{\partial \mathbf{Q}_{a}}{\partial lon}\mathbf{w}_{3}^{i}$$

• <u>Solution 2</u>: use SUBGRID transformation:

Solar type: $Q_o^i = \frac{(1 - \alpha_o^i)}{(1 - \alpha_a)} Q_a$

Non-solar type:
$$Q_o^i = Q_a + \frac{\partial Q_a}{\partial T} \Big|_{T=T_a} (T_o^i - T_a)$$

 Q_a, T_a Q_o^i, T_o^i

*conservative if α_a/T_a correspond to conservative remapping of α_o^i/T_o^i

II.5 Problem with non-matching sea-land masks $Q_o^i = \frac{1}{A_o} \sum_{n=1}^{N} Q_{a_n} w_n^i$

<u>1- Ideally: Support subsurfaces in the atmosphere</u> and use the ocean land-sea mask in the atmosphere to determine the fractional area of each type of surface

II.6 Vector interpolation (winds, currents, ...)

 interpolation of vectors component per component is not accurate, especially where the referential changes rapidly

Example interpolation of a zonal wind in the spherical referential near the pole

At x, one would expect a zonal wind between 0 and 1.
Interpolation comp. per comp. -> zonal wind of 1.

Solution (proposed by O. Marti, LSCE, implemented in OASIS):

- "turn" the vector in the spherical referential and project the resulting vector in a cartesian referential
- interpolate the 3 components in the cartesian referential
- project back in the spherical referential; check that k component is zero
- possibly "turn" the resulting vector in the target local referential

Conclusions

- Different technical solutions to assemble model codes:
 - •Coupling framework (e.g. ESMF):
 - > best solution in a controlled development environment
 - •Coupler (e.g. OASIS):
 - > best solution to couple independently developed codes
- The OASIS coupler :
 - Coarse to fine grid remapping: subgrid variability with 2nd order remapping or SUBGRID (1st order Taylor expansion)
 - Non-matching sea-land masks:
 - DESTAREA: local flux conservation but unrealistic flux values
 - FRACAREA: no local flux conservation but realistic flux values
 - Global conservation can be artificially imposed
 - Vector interpolation: need to project components in a cartesian referential before interpolation.

The end