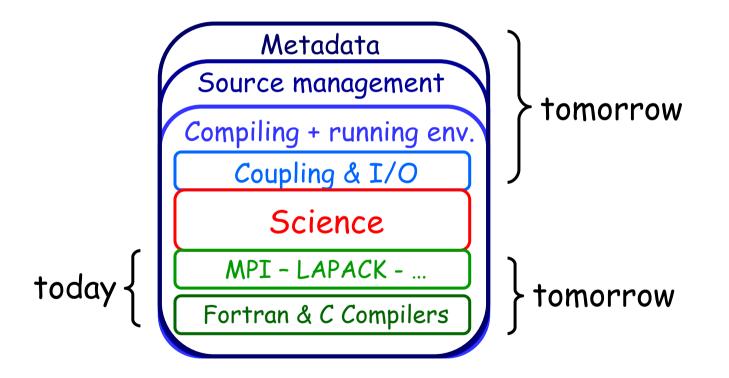

The European PRISM Initiative & the OASIS coupler

The Australian Community Climate and Earth System Simulator (ACCESS) - Challenges & Opportunities, Melbourne, 28/11-01/12 2006


Outline

- Part I PRISM:
 - goals & benefits
 - FP5 project and the Support Initiative
 - organisation
 - the PRISM Areas of Expertise
- Part II OASIS:
 - historical background
 - community today
 - the OASIS3 coupler
 - the OASIS4 coupler
- · Conclusions summary

Increase what Earth system modellers have in common

> Share development and support of these common tools and standards

reduce the technical efforts of each research team
facilitate assembling, running, and post-processing of
ESMs based on state-of-the-art component models

Help climate modellers spend more time on science:

- * promote key scientific diversity
- * increase scientific collaboration
- stimulate computer manufacturer contribution

- 2001-2004: the PRISM EU project
 - a European project funded for 4.8 M€ by the EC
 - 22 partners
- 2005-2008: the PRISM Support Initiative:
 - 7 partners: France: CERFACS, CNRS Germany: MPI-M&D, NEC-CCRLE

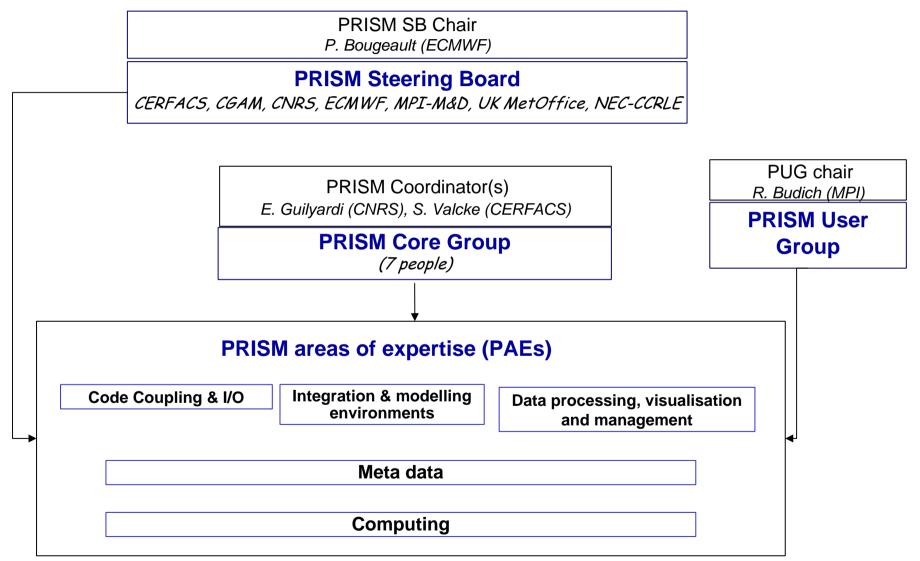
UK: CGAM, UK MetOffice ECMWF

- 9 associate partners:

CSC (Finland)IPSL, Météo-France (France)SMHI (Sweden)MPI-M (Germany)CRAYSUNSGINEC-HPCE

The Australian Community Climate and Earth System Simulator (ACCESS) - Challenges & Opportunities, Melbourne, 28/11-01/12 2006

Slide 5



PRISM is organised around 5 "PRISM Areas of Expertise":

- Organisation of related network of experts
- Promotion and, if needed, development of software tools for ESM
- Promotion of community standards
- Coordination with other international efforts
 - * Code coupling and I/O
 - Integration and modelling environments
 - Data processing, visualisation and management
 - Meta-data
 - * Computing

PRISM: the organisation

PAE Code Coupling and IO

Leader: S. Valcke (CERFACS)

- * development and support of OASIS3 and OASIS4 couplers
- * technology watch on coupling tools developed outside PRISM:
 - PALM coupler (CERFACS), BFG (U. of Manchester), CCSM (NCAR), ...
- * relations with projects involving code coupling:
 - UK Met Office FLUME project, US ESMF project, GENIE project, ACCESS

PAE Integration & modelling environments Leader: M. Carter (MetOffice)

- * source version control for software development
 - Subversion
- $\boldsymbol{\ast}$ code extraction and compilation
 - FCM (UK MetOffice), PRISM SCE (MPI M&D)
- $\boldsymbol{\ast}$ job configuration & running
 - prepIFS/prepOASIS4, SMS (ECMWF), PRISM SRE (MPI M&D)

PRISM: the Areas of Expertise

PAE Data processing, visualisation and management

Leader: M. Lautenschlager (MPI-M&D)

* data processing, visualization, archiving and exchange for Earth system

- NetCDF CF convention
- · CDO (MPI-M), CDAT (PCMDI)
- CERA-2 data model (World Climate Data Centre, MPI-M&D)
- MARS (ECMWF)
- * networking between geographically distributed archives

PAE Computing Leader: M.-A. Foujols (IPSL), R. Redler (NEC-CCRLE)

- keep computer vendors informed about climate community requirements
- > keep Earth system modellers informed about computing evolutions
- Computing aspects important for Earth system modelling:
 file IO, algorithmic developments, portability (parallel and vector systems)

PRISM: the Areas of Expertise

PAE Meta-data

Leader: L. Steenman-Clark (CGAM)

Meta-data: data about data, models, runs, a hot topic in the last few years

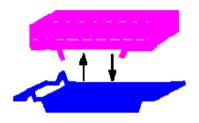
- > exchange and use of data
- > interchangeability of Earth system models or modelling components

* forum to discuss, develop, and coordinate metadata issues:

- Numerical Model Metadata (U. of Reading):
- CURATOR project (USA)
- Numerical grid metadata (GFDL, USA):
- netCDF CF convention (PCMDI and BADC):
- \cdot OASIS4 metadata
- UK Met Office FLUME project:

numerical code bases, simulations data, codes, simulations grid climate and forecast data files coupling and IO interface management of model configuration

End of Part I - PRISM


Slide 11

The OASIS coupler

What is a coupler? A software tool that:

• exchanges (any) information between models with minimal interference in the codes

transforms the coupling fields
 from the source model grid to the target mode grid

contains no "science"; does not define the components

Why use a coupler?

- change as little as possible existing component models
- keep the modularity (model development, evolution)
- keep the flexibility to change one or more components
- use the coupler interpolation and regridding functionality

e.g. ocean-atmosphere: 2D coupling at the air-sea interface

OASIS: developed since 1991 to couple existing GCMs

1991		2001
$ \rightarrow$		PRISM →
$OASIS 1 \rightarrow OASIS 2$	\rightarrow	OASIS3→
	\rightarrow	OASIS4 →

OASIS1, OASIS2, OASIS3:

•low resolution, low number of 2D fields, low coupling frequency:

flexibility very important, efficiency not so much!

OASIS4:

high resolution parallel models, massively parallel platforms, 3D fields
need to optimise and parallelise the coupler

OASIS: the community today

•CERFACS (France) ARPEGE3 - ORCA2-LIN	ARPEGE4 - NEMO-LIM - TRIP		
•METEO-FRANCE (France) ARPEGE4 - ORCA2 ARPEGE3 - OPA8.1-GEL	ARPEGE medias - OPAmed ATO		
•IPSL- LODYC, LMD, LSCE (Fro LMDz - ORCA2LIM	nce) LMDz - ORCA4		
•MERCATOR (France) (for interpolation only)			
MPI - M&D (Germany) ECHAM5 - MPI-OM ECHAM5 - C-HOPE PUMA - C-HOPE EMAD - E-HOPE ECHAM5 - E-HOPE			
•ECMWF IFS - CTM (GEMS)	IFS - ORCA2 (MERSEA)		

OASIS: the community today

•IFM-GEOMAR (Germany) •NCAS / U. Reading (UK) •SMHI (Sweden) •NERSC (Norway) •KNMI (Netherlands) •INGV (Italy) •ENEA (Italy) ·JAMSTEC (Japan) •IAP-CAS (China) •BMRC (Australia) •CSIRO (Australia) •RPN-Environment Canada (Canada) •UQAM (Canada) •U. Mississippi (USA) ·IRI (USA) ·JPL (USA)

ECHAM5 - NEMO (OPA9-LIM) FCHAM4 - ORCA2 HADAM3-ORCA2 RCA(region.) - RCO(region.) ARPEGE - MICOM FCHAM5 - TM5/MPI-OM ECHAM5 - MPI-OM MITgcm - REGgcm ECHAM5(T106) - ORCA $\frac{1}{2}$ deg AGCM - LSM BAM3-MOM2, BAM5-MOM2, TCLAPS-MOM Sea Ice code - MOM4 MFC - GOMGEM - RCO MM5 - HYCOM ECHAM5 - MOM3 UCLA-QTCM - Trident-Ind4-Atlantic

- > Developers: CERFACS, NEC CCRLE, CNRS, SGI, NEC HPCE
- > Public domain; open source license (LGPL)
- > Programming language: Fortran 90 and C
- > Public domain libraries; :
 - external: MPI1 and/or MPI2; NetCDF/parallel NetCDF; libXML
 - •included: GFDL mpp_io; LANL SCRIP

SQ

To use OASIS3 or OASIS4:

- > Identify your component models
- > Identify the coupling fields to be exchanged between those models
- > Adapt your model i.e. insert calls to OASIS communication library (PSMILe)
- > Choose the coupling parameters (source and target, frequency, fields transformations, etc.) and write the configuration file
- > Compile OASIS and the components models linked with PSMILe
- Start OASIS and the models and let it manage the coupling exchanges

- Coupler developed since more than 15 years in CERFACS
- Stable, well-debugged, but limited
- Last version: oasis3_2-5 delivered in September 2006
- User support provided but most development efforts go to OASIS4
- Platforms:

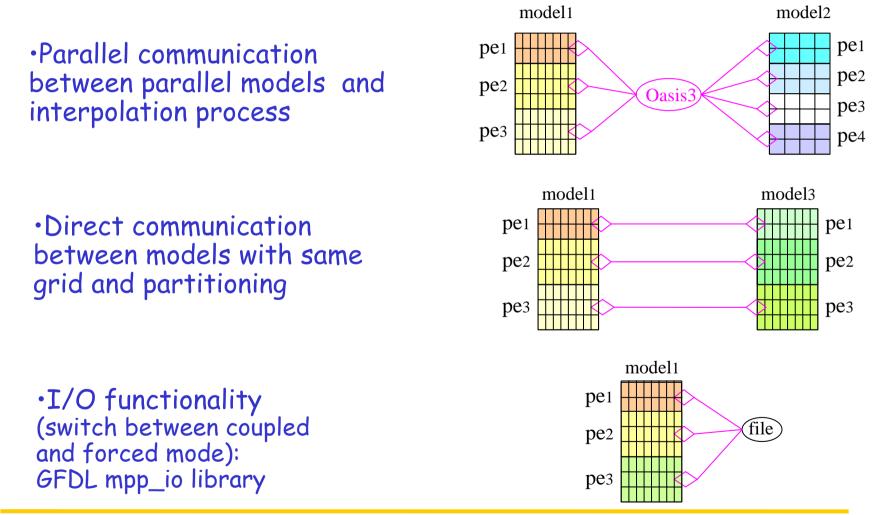
• Fujitsu VPP5000, NEC SX5-6-8, Linux PC, IBM Power4, CRAY XD1, Compaq, SGI Origin, SGI 03400

PRISM System Model Interface Library (PSMILe) API :

- •Initialization:
- •Grid definition:
- Local partition definition:
- •Coupling field declaration:
- •Coupling field exchange:
 - > in model time stepping loop
 - call prism_put (..., time, var_array. ...) call prism_get (..., time, var_array, ...)
 - user's defined source or target (end-point communication)
 - sending or receiving at appropriate time only
 - automatic averaging/accumulation if requested
 - automatic writing of coupling restart file at end of run

- call prism_init(...)
- call prism_write_grid (...)
- call prism_def_partition (...)
- call prism_def_var (...)

OASIS3: coupled model configuration

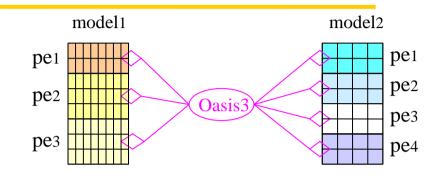

•In text file *namcouple*:

- •total run time
- component models
- number of coupling fields
- •for each exchange:
 - •source and target names (end-point communication)
 - coupling or I/O period
 - •transformations/interpolations

OASIS3: communication

PSMILe based on MPI message passing

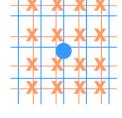
The Australian Community Climate and Earth System Simulator (ACCESS) - Challenges & Opportunities, Melbourne, 28/11-01/12 2006


Slide 21

OASIS3: interpolations/transformations

>separate sequential process (Oasis)

- \checkmark neighbourhood search
- \checkmark weight calculation
- \checkmark interpolation per se during the run
- >on 2D scalar or vector fields


• SCRIP 1.4 library, RPN Fast Scalar INTerpolator:



nearest-neighbour interpolation

bilinear interpolation

bicubic interpolation conservative remapping

- Other spatial transformations: flux correction, merging, etc.
- · General algebraic operations

>on different types of grids: lat-lon, stretched or rotated (logically rectangular), gaussian reduced, unstructured

- "New" coupler developed since ~ 2003
- Beta version available
- As flexible as OASIS3 but fully parallel and more efficient:
 - Parallel communication
 - Parallel interpolation based on NEC-CCRLE multigrid algorithm

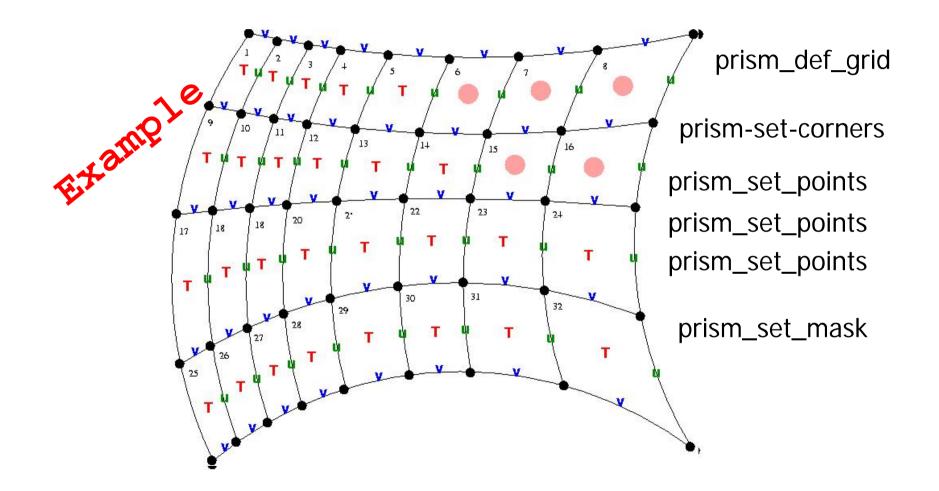
•Initialization:

```
call prism_init_comp (...)
```

Definition of grid (3D)

```
call prism_def_grid (...)
```

```
call prism_set_corners(...)
```


•Placement of scalar points and mask on the grid:

```
call prism_set_points (...)
```

```
call prism_set_mask (...)
```


OASIS4: model adaptation (2/3)

•Coupling or I/O field declaration

call prism_def_var(...)

•Coupling or I/O field sending and receiving:

➤in model time stepping loop

- **call prism_put** (var_id, date, date_bounds, var_array, info, ierr)
- call prism_get (var_id, date, date_bounds, var_array, info, ierr)

>depending on user's specifications in SMIOC:

•user's defined source or target, component or file (end-point communication)
•coupling or I/O sending or receiving at appropriate times
•averaging/accumulation

OASIS4: coupled model configuration

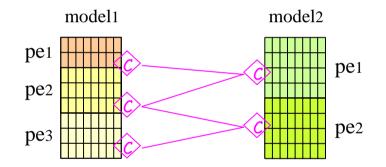
XML (Extensive Markup Language) is a text format

An XML schema:

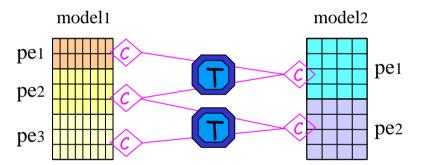
- •defines the legal content of an XML file
- •gives the possibility to check the validity of an XML file

➤a Specific Coupling Configuration (SCC):

- start date and end date
- applications, components for each application
- host(s), number of processes per host, ranks for each component


>For each component,

- a Specific Model Input and Output Configuration (SMIOC)
 - $\boldsymbol{\cdot}$ grid information: chosen resolution, ...
 - coupling fields:
 - name, units, valid min max, numerical type, grid
 - •input and/or output
 - source and/or target (component and/or file)
 - coupling or I/O dates
 - •transformations/interpolations/combinations

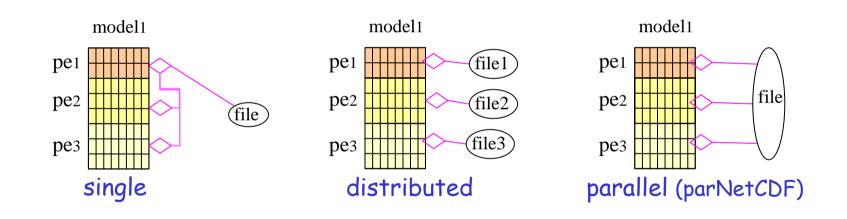


OASIS4 communication (1/2)

<u>Model interface library:</u> PSMILe based on MPI1 or MPI2 •Parallel communication **including repartitioning**: •based on geographical description of the partitions •parallel calculation of communication patterns in source PSMILe

Same grid, different decomposition > direct repartitioning

Different grid and decomposition> interpolation in parallel Transformer


> one-to-one, one-to-many
> extraction of useful part of source field only

OASIS4 communication (2/2)

<u>Model interface library:</u> PSMILe based on MPI1 or MPI2

• Parallel I/O (vector, bundles, vector bundles) : GFDL mpp_io + parNetCDF

OASIS4 regridding/transformations

- source time transformations (prism_put):
 - average, accumulation
- statistics
- local transformations:
 - addition/multiplication by scalar
- interpolation/regridding (3D):
 - 2D nearest-neighbour , bilinear, bicubic
 - 3D nearest-neighbour, trilinear
- > on different types of grids:
 - •regular or irregular lat-lon
 - •stretched and/or rotated (logically-rectangular)
 - •Gaussian reduced
 - non-geographical

OASIS4: developments & perspectives

- Current developments:
 - 2D conservative remapping
 - Parallel global search for the interpolation
 - Transformer efficiency
 - Full validation of current transformations
- OASIS4 regularly tested and run with toy examples on:
 - $\cdot NEC$ SX6 and SX8 (NEC SX compilers)
 - •IBM Power4 (XL Fortran Compiler)
 - •PC-Linux (Portland Group Compiler Version 6.1)
- Beta version OASIS4_0_2 available to beta tester groups:
 - •EU project GEMS: atmospheric dynamic and chemistry coupling
 - •SMHI: ocean-atmosphere regional coupling
 - •UK Met Office: global ocean-atmosphere coupling (currently prototyping)
 - •IFM-GEOMAR (Kiel) in pseudo-models to interpolate high-resolution fields.
- > Public version available in 2007

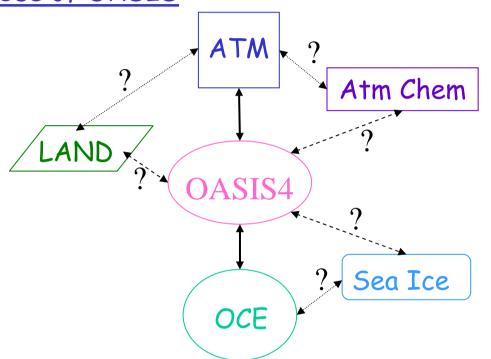
- * PRISM provides:
- > network allowing ESM developers to share expertise and ideas

(Code coupling and I/O, Integration and modelling environments, Data processing, visualisation and management, Computing, Meta-data)

- > framework promoting common software tools for Earth system modelling
- > some standard tools (OASIS, source management, compiling, ...)
- > visible entry point for international coordination (metadata)
- > organisation for **funding request** (hard to get money for infrastructure)
- PRISM current decentralized organisation (bottom-up approach):
 Illows "best of breed" tools to naturally emerge
 relies on the developments done in the different partner groups
- * Interested groups are most welcome to join ! http://www.prism.enes.org

Part II - OASIS3 & OASIS4 summary

	OASIS3	OASIS4
Development	stable, well tested	new, beta version under test
Model adaptation	Few OASIS3 PSMILe routines	Few OASIS4 PSMILe routines (more complex grid def)
Configuration of the coupled model	flexible; in an external text file (exchanges, frequency, transformations,)	flexible; in external in XML files (exchanges, frequency, transformations,)
Communication	partially parallel, one-to-one	fully parallel one-to-many
Interpolation	mono-process	fully parallel and efficient (multigrid algorithm)
	2D nearest-neigh., bilinear, bicubic conservative remapping	3D nearest-neigh., bi/trilinear, bi/tricubic


The Australian Community Climate and Earth System Simulator (ACCESS)

- Challenges & Opportunities, Melbourne, 28/11-01/12 2006

In conclusion for ACCESS

Use of OASIS

 Regarding PRISM: ACCESS

 ☑ shares PRISM philosophy

 ☑ uses OASIS

 ☑ uses Subversion and FCM

 ☑ uses NetCDF CF convention

 ☑ uses MARS

 … S0 …

ACCESS is already part of PRISM User Group!

© change as little as possible existing models

- $\ensuremath{\textcircled{}^\circ}$ keep the modularity and the flexibility
- $\ensuremath{\textcircled{}^\circ}$ use coupler interpolations
- $\ensuremath{\mathfrak{S}}$ probably loose some efficiency

The end

OASIS4: component model description

Application and component description (XML files):

>For each application (code): one Application Description (AD):

 $\boldsymbol{\cdot} possible \ number \ of \ processes$

components included

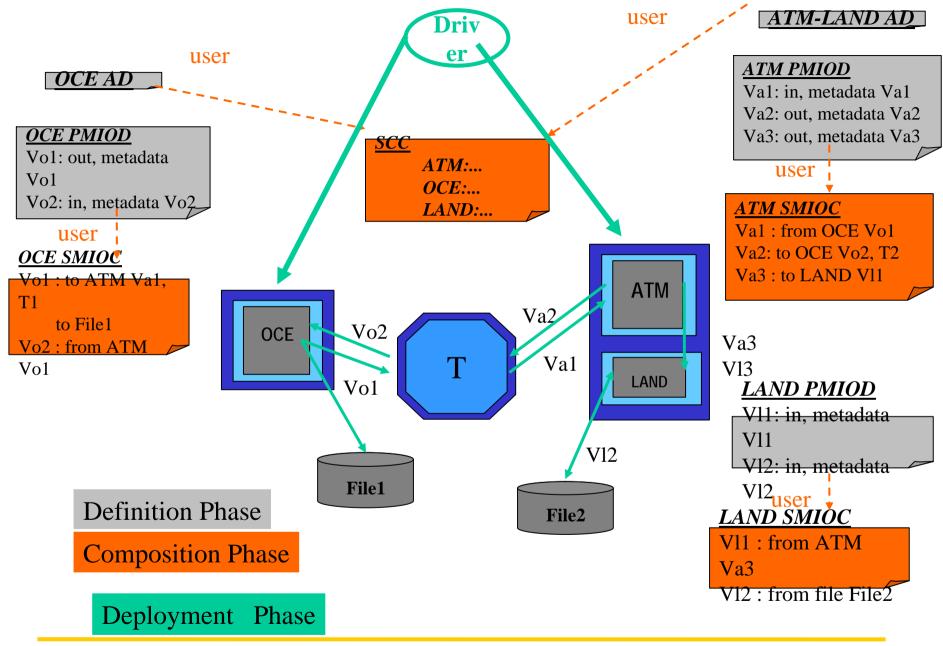
For each component in the application:

one Potential Model Input and Output Description (PMIOD)

•component general characteristics: name, component simulated, ...

•grid information: domain, resolution(s), grid type, ...

•potential I/O or coupling variables:


local name, standard name

units, valid min and max

numerical type

associated grid and points

•intent -input and/or output

The Australian Community Climate and Earth System Simulator (ACCESS) - Challenges & Opportunities, Melbourne, 28/11-01/12 2006

Grids supported by OASIS4

- Regridding, repartitioning, I/O:
 - Regular in lon, lat, vert ("Regionlatvrt"):
 - lon(i), lat(j), height(k)
 - Irregular in lon and lat, regular in the vert ("irrlonlat_regvrt"):
 - lon(i,j), lat(i,j), height(k)
 - Irregular in lon, lat, and vert ("irrlonlatvrt") (not fully tested)
 - lon(i,j,k), lat(i,j,k), height(i,j,k)
 - Gaussian Reduced in Ion and lat, regular in the vert ("Gaussreduced_regvrt")
 - lon(nbr_pt_hor), lat(nbr_pt_hor), height(k)
- Repartitioning and I/O only:
 - "Non-geographical" fields
 - no geographical information attached
 - local partitions described in the global index space (prism_def_partition)
- •I/O only:
 - Unstructured grids ("unstructionlatvrt")
 - •lon(npt_tot), lat(npt_tot), height(npt_tot)

 \Rightarrow Structured way of providing information \Rightarrow Hierarchy of elements and attributes \Rightarrow Structure of an XML file given by an XSD (schema) file

SCC.xsd

```
• • •
```

```
<xs:element name="host">
  <xs:complexType>
```

<xs:sequence>

<xs:element name="nbr_procs"/>

</xs:sequence>

```
<xs:attribute name="local_name"
type="xs:string" use="required"/>
```

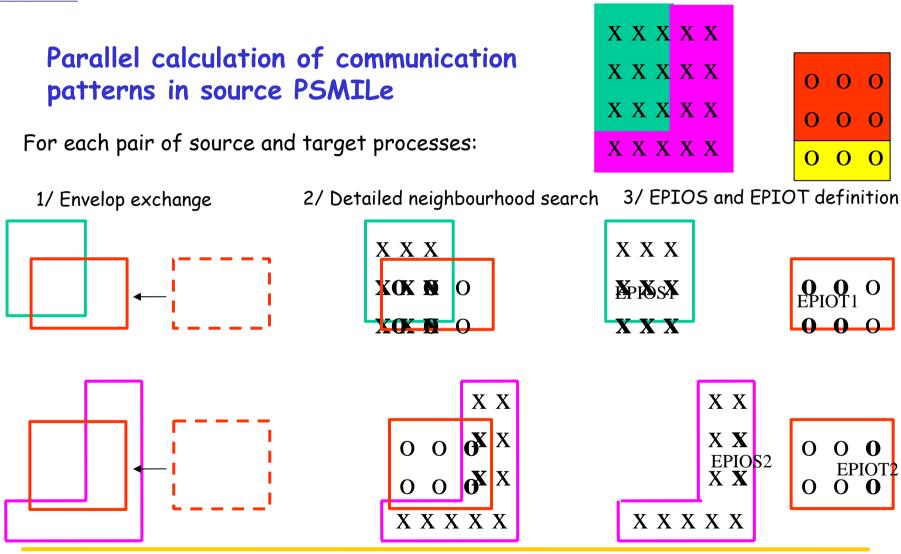
</xs:complexType>

</xs:element>

```
<xs:element name="nbr_procs"
type="xs:integer" />
```

```
SCC.xml
```

```
•••
```


```
<host local_name="host1">
<nbr_procs>2</nbr_procs>
</host>
```

•••

The Australian Community Climate and Earth System Simulator (ACCESS) - Challenges & Opportunities, Melbourne, 28/11-01/12 2006

Oasis4: communication (2/3)

The Australian Community Climate and Earth System Simulator (ACCESS)

- Challenges & Opportunities, Melbourne, 28/11-01/12 2006

Slide 40